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Abstract. The two objectives of this paper are: (1) to articulate three
new general techniques for designing FPT algorithms, and (2) to apply
these to obtain new FPT algorithms for Set Splitting and Vertex

Cover. In the case of Set Splitting, we improve the best previous
O∗(72k) FPT algorithm due to Dehne, Fellows and Rosamond [DFR03],
to O∗(8k) by an approach based on greedy localization in conjunction
with modeled crown reduction. In the case of Vertex Cover, we de-
scribe a new approach to 2k kernelization based on iterative compression
and crown reduction, providing a potentially useful alternative to the
Nemhauser-Trotter 2k kernelization.

1 Introduction

This paper has a dual focus on: (1) the exposition of some new general FPT
algorithm design techniques, and (2) the description of two concrete applications
of these techniques to the Vertex Cover and Set Splitting problems. The
latter is defined:

Set Splitting

Instance: A collection F of subsets of a finite set X,
and a positive integer k.

Parameter: k
Question: Is there a subfamily F ′ ⊆ F

and a partition of X into disjoint subsets X0 and X1

such that for every S ∈ F ′, S ∩ X0 6= ∅ and S ∩ X1 6= ∅,
with |F ′| ≥ k?

The Set Splitting problem is NP-complete [GJ79] and APX-complete
[Pe94]. Andersson and Engebretsen [AE97], and Zhang and Ling [ZL01] pre-
sented approximation algorithms that provide solutions within a factor of 0.7240



and 0.7499, respectively. A 1/2 approximation algorithm for the version of the
Set Splitting problem where the size of X0 is specified has been described by
Ageev and Sviridenko [AS00].

It is a straightforward exercise to show that Set Splitting is fixed param-
eter tractable by the method of color-coding [AYZ95]. One of the techniques we
will discuss, which we refer to here as greedy localization was first used by Chen,
Friesen, Jia and Kanj [CFJK01] (see also Jia, Zhang and Chen [JZC03]). This
approach can potentially be employed in designing FPT algorithms for many
different maximization problems. In the case of Set Splitting we present an
example of the deployment of this approach that yields a significant improve-
ment over the best previous O∗(72k) FPT algorithm for this problem, due to
Dehne, Fellows and Rosamond [DFR03]. Here we combine this technique with
crown reduction (where the reduction rule is guided by a crown decomposition
of an associated graph that models the situation) and obtain an O∗(8k) FPT
algorithm for Set Splitting.

The method of iterative compression could be viewed as in some sense “dual”
to greedy localization, since it seems to be potentially applicable to a wide range
of minimization problems. Both of these techniques are in the way of “opening
moves” that can be used to develop some initial structure to work with. Neither is
technically deep, but still they can be pointed to as potentially of broad utility in
FPT algorithm design. A simple application of iterative compression to Vertex

Cover yields a new 2k Turing kernelization that may offer practical advantages
over the Nemhauser-Trotter 2k many:1 kernelization algorithm.

We assume that the reader has a basic familiarity with the fundamental con-
cepts and techniques in the FPT toolkit, as exposited in [DF99,Nie02] (and also
with the definition of basic combinatorial problems such as Vertex Cover). We
also assume that the reader is familiar with the research program in “worst-case
exponential complexity” articulated in the survey paper by Woeginger [Woe03].
In particular, we employ the handy O∗ notation introduced there for FPT re-
sults, that suppresses the polynomial time contribution of the overall input size
and focuses attention on the exponential time-complexity contribution of the
declared parameter. An FPT algorithm that runs in time O∗(8k) thus runs in
time O(8knc) for some constant c independent of the parameter k.

2 The New Techniques

There are three new FPT design techniques to which we wish to draw attention:

• greedy localization
• iterative compression
• modeled crown reductions

The first two are only relatively simple opening moves, but nevertheless these
deserve wider recognition in the context of FPT algorithm design.
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2.1 Greedy Localization

This is an approach that can often be applied to maximization problems. The
idea is to start off with an attempted greedy solution. For example, in the case
of the Set Packing algorithm due to Jia, Zhang and Chen, the first step is to
greedily compute a maximal collection of pairwise disjoint sets. If k are found,
then of course we are done. Otherwise, we can make the observation that if
there is any solution (k pairwise disjoint sets) then every set in the solution
must intersect our (small) maximal collection. Thus we have gained some ini-
tial information that narrows our search, “localizes” our efforts to this initial
structure.

As Set Splitting is a maximization problem, we will similarly employ here
an opening move that attempts to find a greedy solution, which similarly either
succeeds and we are done, or provides us with some initial structure to work with.
Greedy localization has been employed in a few other recent FPT algorithms
[FHRST04,PS04,MPS04,FKN04].

2.2 Iterative Compression

This “opening move” to develop initial structure seems first to have been used in
an FPT algorithm recently described by Reed, Smith and Vetta for the problem
of determining for a graph G whether k vertices can be deleted to obtain a
bipartite graph G′ (an important breakthrough as this problem has been open
for some time) [RSV03]. Their approach can be briefly described as follows.

First, the problem is respecified constructively: we aim for an FPT algorithm
that either outputs NO, or constructively produces the set of k vertices whose
removal will make the graph bipartite.

Second, we attempt a recursive solution (which we will see has a simple
iterative interpretation). Choose a vertex v, and call the algorithm on G − v.
This either returns NO, and we can therefore return NO for G, or it returns a
solution set of size k. By adding v to this set, we obtain a solution of size k + 1
for G, and what remains to be done is to address the following (constructive)
compression form of the problem:

Input: G and a solution S of size k + 1
Output: Either NO, or a solution of size k, if one exists.

The iterative interpretation is that we are building the graph up, vertex by
vertex, and at each step we have a small solution (of size k + 1) and attempt to
compress it. This interpretation makes clear that our overall running time will
be O(n · f(n, k)) where f(n, k) is the running time of our FPT algorithm for
the compression form of the problem. Of course, all the real work lies there, but
this overall algorithmic approach, simple as it is, gives us some initial structure
to work with. The approach is clearly of potential utility for many different
minimization problems. (For another recent application see [Ma04].)
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2.3 Modeled Crown Reductions

Both of our concrete applications, to the Set Splitting and to the Vertex

Cover problems, also use the recently developed techniques of crown decompo-
sitions and crown reduction rules. This technique was first introduced by Chor,
Fellows and Juedes [CFJ04] (a brief exposition can also be found in the re-
cent survey [F03]). In [CFJ04] the technique is applied to the problems Graph

Coloring with (n − k) Colors and to Vertex Cover. Crown reduction
has turned out to be effective for a surprisingly wide range of parameterized
problems; see also [PS03,FHRST04,PS04,MPS04]. Here we show that crown re-
ductions can even be employed on problems that are not about graphs. Our
O∗(8k) FPT algorithm for Set Splitting employs a kernelization rule that is
based on a crown decomposition in an associated auxiliary graph that models
some of the combinatorics of the Set Splitting problem.

The machinery from [CFJ04] that we employ here is next described.

Definition 1. A crown decomposition of a graph G = (V,E) is a partition of

the vertices of G into three disjoint sets H,C and J with the following properties:

1. C is an independent set in G.

2. H separates C from J , that is, there are no edges between C and J .

3. H is matched into C, that is, there is an injective assignment m : H → C
such that ∀h ∈ H, h is adjacent to m(h).

The Crown Rule for Vertex Cover transforms (G, k) into (G′, k′), where
G′ = G−C −H, and k′ = k − |H|. The Crown Rule for the Graph Coloring

with (n − k) Colors problem is (surprisingly) the same rule applied to Ḡ
[CFJ04].

We will use the following lemma from [CFJ04].

Lemma 1. If a graph G = (V,E) has an independent set I ⊆ V (G) such that

|N(I)| < |I| then a nontrivial crown decomposition (C,H, J) with C ⊆ I for G
can be found in time O(|V | + |E|).

3 An O
∗(8k) FTP algorithm for Set Splitting

The input to the Set Splitting problem consists of a family F ⊆ 2X of subsets
of a base set X, and a positive integer k. We can trivially assume that every set
S ∈ F consists of at least two elements of X.

The first step of our algorithm is a greedy computation of what we will term
a witness structure for the instance. The witness structure consists of a collection
of sets F ′ ⊆ F , and for each of the sets Si ∈ F ′ a choice of two distinct elements
bi ∈ Si and wi ∈ Si. It is allowed that these chosen elements may coincide, that
is, for Si 6= Sj possibly bi = bj or wi = wj (or both). What is also required of the
witness structure is that the sets B = {b1, b2, ..., br} of black witness elements,
and W = {w1, w2, ..., wr} of white witness elements are disjoint. It is clear that
if we succeed in greedily computing a witness structure with |F ′| = r, then any
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extension of the disjoint subsets B and W of X to a bipartition of X will split
the r sets in F ′.

The first step (greedy localization) is to compute a maximal witness structure
by the obvious greedy algorithm of repeatedly adding sets to F ′ so long as this
is possible. If r ≥ k then we are done.

At the end of the greedy step, if we are not done, then the following structural
claims hold.

Claim 1. Every set S not in the maximal witness structure collection F ′ consists
entirely of black or entirely of white elements, that is, either S ⊆ B or S ⊆ W .

Proof. We have assumed that every set contains at least two elements. Consider
a set S ∈ F that is not in the maximal witness structure family F ′. If S ⊆ B∪W ,
then clearly either S ⊆ B or S ⊆ W else S is split and could be added to F ′.
Hence suppose that there is an element x ∈ S, where x /∈ B∪W . If S contains an
element of B (or W ) then x could be assigned to W (or B) and F ′ augmented by
S, contradicting our assumption that the witness structure is maximal. Since S
has at least two elements, the only remaining case is that S contains two distinct
elements that do not belong to B ∪ W . But then, one could be assigned to B
and one to W and F ′ could again be augmented, contradicting our assumption.

The following claim is obvious (but crucial):

Claim 2. |B| ≤ k − 1 and |W | ≤ k − 1.

Our algorithm is described as follows:

Step (1): Greedily compute a maximal witness structure. If k sets are split,
then report YES and STOP. (If not, then |F ′| ≤ k − 1.)

Step (2): Branch on all ways of “recoloring” the (at most) 2(k − 1) elements
that were colored (placed in either B or W ) in the witness structure.

Subproblem
For each recoloring (bipartition) of B ∪ W into B′ and W ′

Step (3): Determine the number of sets that have been split. If k sets are split
then report YES and STOP.

Otherwise
Step (4): Generate an auxiliary graph G describing the sets that remain unsplit
and the elements of X − (B ∪ W ) contained in them.

Step (5): Repeatedly apply the Crown Reduction Rule (described below) to
the subproblem represented by this graph until a subproblem kernel consisting
of at most (k − 1) elements not in B′ ∪ W ′ remains.

Step (6): After we have exhausted the ability to reduce the subproblem in-
stance using the Crown Reduction Rule, there can be at most k− 1 vertices still
remaining to be assigned a color. Try all 2k−1 ways to color these elements.
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3.1 The Subproblem

After re-coloring (partitioning) B ∪ W into B′ and W ′, some number t of sets
in F will have been split (that is, have nonempty intersection with both B′

and W ′). If t ≥ k then of course we will be done (Step 3). Let G denote the
subfamily of F that is not split by B′ and W ′. The subproblem is whether the
disjoint sets B′ and W ′ can be extended to a bipartition of X that splits k sets.
In other words, the subproblem is to determine if the remaining (yet uncolored)
elements, those in X − (B′ ∪W ′) can be colored (black and white, extending B′

and W ′) in such a way that at least k′ = k − t further sets in G are split. Note
that the fate of any set that is a subset of B ∪ W is completely determined by
the recoloring into B′ and W ′: it is either among those split, or no extension
can split it. Thus in the subproblem, we can restrict our attention (by Claim
1) to the sets in G′ = G − 2B∪W ⊆ F ′. That is, the only candidates for further
splitting belong to our greedy collection F ′ (!) and there are at most k − 1 of
these. We can therefore observe the following claims concerning the subproblem:

Claim 3. Every set in G′ contains either two distinct elements of B′ (denote
these sets B) or two distinct elements of W ′ (denote these sets W). Furthermore,
every set in G′ contains at least one element of X − (B′ ∪ W ′).

Claim 4. |B ∪W| ≤ k − 1.

3.2 Crown Reduction for the Subproblem

The subproblem is modeled by a bipartite graph with vertex sets VB ∪ VW , and
VU . The vertices vS of VB ∪ VW correspond, respectively, to the unsplit sets S
in B and W. The vertices ux of VU correspond to the uncolored elements in
U = X − (B′ ∪ W ′). There is an edge between vS and ux if and only if x ∈ S.
See Figure 2.

Un-Split B Sets

Un-Split W Sets

Uncolored elements

Fig. 1. Auxiliary Graph

The graph model of the subproblem may now be used to locate a crown
decomposition that can be used to kernelize the subproblem instance.
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By Lemma 1, if |U| ≥ k then we can efficiently compute a nontrivial crown
decomposition (C,H, J) with C ⊆ VU . Interpreting what this means for the
subproblem instance, we have identified a nonempty subset H of the unsplit sets
in B ∪W (the head) that is matched into a subset C of the uncolored elements
U , the crown. Furthermore, by the properties of a crown decomposition, the
elements of C do not belong to any other unsplit sets in B ∪W.

We can kernelize the subproblem instance according to the following rule:

Crown Reduction Rule: In the situation described above, we can reduce the
subproblem instance by using the matched elements in C to split the sets in H,
augmenting B′ and W ′ accordingly. Thus the reduced subproblem instance is
modeled by the graph obtained by deleting the vertices that correspond to C
and H and recalculating k′.

Un-Split B − Sets

Un-Split W − Sets

Uncolored Elements

Crown

Head
︸ ︷︷ ︸

( At most k − 1 )

Fig. 2. Crown Decomposition

Lemma 2. The crown rule can be used to reduce the number of elements not

assigned a color to be less than k − 1 in polynomial time.

Proof. Lemma 1 states that if a graph G = (V,E) has an independent set I ⊆
V (G) such that |N(I)| < |I| then G admits a nontrivial crown decomposition
where the crown set is a subset of I. As long as the number of elements not
assigned a color is greater than |W ∪B| we can find a crown in polynomial time.
Thus as |W ∪B| ≤ k − 1 , by continually applying the crown rule we can reduce
the number of elements that still need to be assigned a color to k − 1.

3.3 Complexity Analysis of the Algorithm

Theorem 1 The Set Splitting problem for parameter k can be solved in

O∗(8k−1) time.

Proof. Finding a maximal witness structure can be performed in O(n) time.
By Lemma 3, |B ∪ W | ≤ 2(k − 1). The algorithm will branch into at most 4k−1

subproblems. Each branch is a completely contained subproblem with the partial
splitting of the base set depending on which branch we are on. The Crown Rule
kernelization results in a subproblem kernel having at most k − 1 uncolored
elements. Thus there are at most 2k−1 colorings of these to be explored. With at
most 4k−1 subproblems, each yielding (after kernelization) at most 2k−1 branches
to explore, we get an O∗(8k−1) FPT algorithm.
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4 A New 2k Kernelization for Vertex Cover

If we apply the iterative compression technique to the Vertex Cover prob-
lem, then we are concerned with the following solution compression form of the
problem, which is specified constructively, rather than as a decision problem:

Input: A graph G = (V,E) and a (k + 1)-element vertex cover V ′ ⊆ V .
Parameter: k
Output: Either a k-element vertex cover, or NO if none exists.

Lemma 1 guarantees a nontrivial crown decomposition if the number of ver-
tices in V − V ′ exceeds k + 1. Thus we immediately obtain a problem kernel
having at most 2(k + 1) vertices. This improves the 3k kernel based on crown
reduction described in [CFJ04].

Note. The astute reader will note that this is not a “kernel” in the usual sense of
the word (which is generally taken in the sense of many:1 polynomial-time reduc-
tions). Here the 2k kernel that we achieve is actually a series of n kernels, which
can be formalized as a Turing form of parameterized problem kernelization.

5 Conclusions and Open Problems

We have described some new approaches in the design of FPT algorithms, and
have applied these to two concrete problems. The more substantial of these appli-
cations is an O∗(8k) FPT algorithm for Set Splitting, significantly improving
the best previous O∗(72k) algorithm. While our contribution in the case of Ver-

tex Cover is really little more than a small observation, it is still somewhat
surprising that after so much attention to this problem there is anything new to
be said about it. Whether 2k kernelization via iterative compression and crown
reduction has any practical advantages over Nemhauser-Trotter kernelization is
an interesting question for further research along the lines of [ACFLSS04], where
it is demonstrated that crown reduction is indeed useful in a practical sense. In
general, it seems that the articulation of the basic toolkit for FPT algorithm
design is still, surprisingly, in its infancy.

Acknowledgement. We thank Daniel Marx for helpful discussions and sug-
gestions, particularly about the iterative compression technique, for which he
suggested the name.
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