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Abstract. The NP-complete geometric covering problem Rectangle
Stabbing is defined as follows: Given a set of horizontal and vertical lines
in the plane, a set of rectangles in the plane, and a positive integer k,
select at most k of the lines such that every rectangle is intersected by
at least one of the selected lines.
While it is known that the problem can be approximated in polynomial
time with a factor of two, its parameterized complexity with respect to
the parameter k was open so far—only its generalization to three or more
dimensions was known to be W[1]-hard. Giving two fixed-parameter re-
ductions, one from the W[1]-complete problem Multicolored Clique
and one to the W[1]-complete problem Short Turing Machine Ac-
ceptance, we prove that Rectangle Stabbing is W[1]-complete with
respect to the parameter k, which in particular means that there is no
hope for fixed-parameter tractability with respect to the parameter k.
Our reductions show also the W[1]-completeness of the more general
problem Set Cover on instances that “almost have the consecutive-
ones property”, that is, on instances whose matrix representation has at
most two blocks of 1s per row.
For the special case of Rectangle Stabbing where all rectangles are
squares of the same size we can also show W[1]-hardness, while the pa-
rameterized complexity of the special case where the input consists of
rectangles that do not overlap is open. By giving an algorithm running
in (4k + 1)k · nO(1) time, we show that Rectangle Stabbing is fixed-
parameter tractable in the still NP-hard case where both these restric-
tions apply.

1 Introduction

Geometric covering problems arise in many applications and are intensively stud-
ied (see [8, 9, 14]). Here, we consider the problem 2-Dimensional Rectangle
Stabbing (Rectangle Stabbing for short), which is defined as follows.
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Michael R. Fellows was supported by the Alexander von Humboldt-Foundation,
Bonn, Germany, as a recipient of the Humboldt Research Award.



(2-Dimensional) Re
tangle Stabbing
Input: A set L of vertical and horizontal lines embedded in the plane, a set R of

axis-parallel rectangles embedded in the plane, and a positive integer k.
Question: Is there a set L′ ⊆ L with |L′| ≤ k such that every rectangle from R is

intersected (“stabbed”) by at least one line from L′?

Rectangle Stabbing is NP-complete (see [8]). Its optimization version,
considered in the setting of polynomial-time approximation, asks for a minimum-
cardinality set L′ ⊆ L to cover all rectangles from R.

Applications of Rectangle Stabbing range from radiotherapy [10] to em-
bedded sensor networks, spatial data organization and statistical data analy-
sis [1, 11]. Also, the problem of stabbing arbitrary connected figures (instead of
rectangles) in the plane with horizontal and vertical lines can easily be reduced
to Rectangle Stabbing by replacing each figure by its bounding box. The
same holds for the stabbing problem where only the rectangles in the plane are
given and a minimum number of horizontal and vertical lines shall be inserted
that stab all rectangles: any instance of this problem can be transformed into
an instance of Rectangle Stabbing by inserting O(|R|) lines. Without loss of
generality, we can always assume that all given lines have integer coordinates.

The literature so far mainly considers the polynomial-time approximabil-
ity of Rectangle Stabbing and its variants. Hassin and Megiddo [10] give
a factor-d2d−1 approximation for stabbing d-dimensional, identical objects with
axis-parallel lines in the d-dimensional space. Gaur et al. [8] achieve a factor-d ap-
proximation for d-Dimensional Rectangle Stabbing, that is, for stabbing
d-dimensional, axis-parallel hyperboxes with (d − 1)-dimensional, axis-parallel
hyperplanes; the two-dimensional case Rectangle Stabbing, hence, can be
approximated with a factor of two. A similar result was obtained by Mecke
et al. [16]; they give a factor-d approximation algorithm for a problem called
d-C1P-Set Cover, which is a generalization of d-Dimensional Rectangle
Stabbing. Weighted and capacitated versions of d-Dimensional Rectangle
Stabbing have been considered by Even et al. [4] and by Xu and Xu [18], also
leading to several approximation algorithms. A restricted, but still NP-complete
variant of (2-Dimensional) Rectangle Stabbing is called Interval Stab-
bing; here, every rectangle in the input is intersected by at most one horizontal
line (that is, every rectangle is a horizontal interval in the plane). Kovaleva and
Spieksma [12, 13] give constant-factor approximations for several variants of In-
terval Stabbing. Approximation algorithms for the more general variant of
Interval Stabbing where the input contains horizontal and vertical intervals
have been developed by Hassin and Megiddo [10].

Concerning the parameterized complexity of Rectangle Stabbing and d-
Dimensional Rectangle Stabbing (that is, the question whether there is
an algorithm running in f(k) · |(L,R, k)|O(1) time), it is known that, on the
one hand, d-Dimensional Rectangle Stabbing is W[1]-hard with respect to
the parameter k for d ≥ 3 [2]. On the other hand, two special cases of Rect-
angle Stabbing in two dimensions have been shown to be fixed-parameter
tractable [2]: If each rectangle is intersected by at most b horizontal but arbitrar-



ily many vertical lines or at most b vertical but arbitrarily many horizontal lines,
or if each horizontal line intersects at most b rectangles, then Rectangle Stab-
bing is fixed-parameter tractable with respect to the combined parameter b, d.
The parameterized complexity of Rectangle Stabbing without restrictions,
however, remained open so far [2].

The contributions of this paper are the following. In Section 3, we settle
the question of Dom and Sikdar [2] for the parameterized complexity of (2-
Dimensional) Rectangle Stabbing by proving its W[1]-hardness with re-
spect to the parameter k as well as its membership in W[1]. Our proofs also
show the W[1]-completeness of the more general problem 2-C1P-Set Cover
(see Section 2), which was also open so far [2]. In Section 4, we consider the re-
striction of Rectangle Stabbing where all rectangles in the input are squares
of the same size that do not intersect. After showing its NP-hardness, we prove
that this variant is fixed-parameter tractable. Due to the lack of space, some
proofs are omitted.

2 Preliminaries

In the framework of parameterized complexity [3, 6, 17], the running time of an
algorithm is viewed as a function of two quantities: the size of the given problem
instance and a parameter. Thus, a parameterized problem is a subset of Σ∗×N,
where Σ is a finite alphabet and N is the set of positive integers; an instance
of a parameterized problem is a pair (I, k), where k is called the parameter.
A parameterized problem is said to be fixed-parameter tractable (FPT) with
respect to the parameter k if there exists an algorithm for the problem running
in f(k) · |I|O(1) time, where f is a computable function only depending on k.

A parameterized problem π1 is fixed-parameter reducible to a problem π2 if
there are two computable functions f, g : N → N and an algorithm that trans-
forms an instance (I, k) of π1 into an instance (I ′, f(k)) of π2 in g(k)·|I|O(1) time
such that (I ′, f(k)) is a yes-instance for π2 iff (I, k) is a yes-instance for π1. The
complexity hierarchy used for characterizing the hardness of parameterized prob-
lems is the W-hierarchy consisting of the classes W[1],W[2], . . . ,W[Sat],W[P],
interrelated as follows: FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[Sat] ⊆ W[P]. There
is strong evidence that all these subset inclusions are strict, which means that
there are problems in W[1] that are presumably not fixed-parameter tractable
and, in particular, that W[1]-hard problems are not fixed-parameter tractable [3,
6, 17]. To show that a problem is W[1]-hard (is in W[1]), one needs to exhibit a
fixed-parameter reduction from a known W[1]-hard problem to the problem at
hand (from the problem at hand to a problem known to be in W[1]). A problem
is W[1]-complete if it is W[1]-hard and in W[1].

When considering an instance (L,R, k) of Rectangle Stabbing, let L =
V ∪ H, where V = {v1, . . . , vn} are the vertical lines, ordered from left to right,
and H = {h1, . . . , hm} are the horizontal lines, ordered from top to bottom.
For a rectangle r ∈ R, let lx(r), rx(r), tx(r),bx(r) be the indices of the left-
most, rightmost, topmost and bottommost line intersecting r. We define the
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Fig. 1. Left top: A matrix having the 2-C1P, but not the 2-SC1P. Left bottom: A
matrix having the 2-SC1P. Middle and right: Illustration of the equivalence between
Rectangle Stabbing and 2-SC1P-Set Cover. In all figures of this paper, only the
1-entries of the matrices are displayed (that is, all 0-entries are omitted).

width wh(r) := rx(r)− lx(r)+ 1 and the height ht(r) := bx(r)− tx(r)+ 1 as the
number of vertical and horizontal lines, respectively, intersecting r. A rectangle r

is called a square if wh(r) = ht(r).
All graphs that we consider are undirected; a graph G = (V,E) is called k-

colorable if there is a function c : V → {1, . . . , k} satisfying ∀{u, v} ∈ E : c(u) 6=
c(v); the function c is then called a k-coloring for G.

For a simpler description of our algorithms and reductions, we will consider
Rectangle Stabbing as a covering problem on binary matrices, which is a
restricted version of the NP-complete problem Set Cover.3Set Cover
Input: A binary matrix M and a positive integer k.
Question: Is there a set C′ of at most k columns of M such that the submatrix M ′

of M that consists of these columns has at least one 1 in every row?

To introduce restricted versions of Set Cover, we need the following.

Definition 1. 1. Given a binary matrix M , a block of 1s in a row of M is a
maximal set of consecutive 1-entries in this row.

2. A binary matrix M has the d-consecutive-ones property (d-C1P) if in
every row of M there are at most d blocks of 1s.

3. A binary matrix M with columns c1, . . . , cn has the separated d-consecu-
tive-ones property (d-SC1P) if the columns of M can be partitioned into d sets
of consecutive columns C1 = {c1, . . . , cj1}, C2 = {cj1+1, . . . , cj2}, . . . , Cd =
{cjd−1+1, . . . , cn} such that for every i ∈ {1, . . . , d} the submatrix of M consisting
of the columns of Ci has at most one block of 1s per row.

See Fig. 1 for an illustration for the d-C1P and d-SC1P.

3 Set Cover is usually defined as a subset selection problem; however, the equivalence
of our definition and the more common definition of Set Cover as a subset problem
can easily be seen by identifying columns with subsets and rows with elements to be
covered.



If Set Cover is restricted by demanding that the input matrix M must
have the d-C1P, then we call the resulting problem d-C1P-Set Cover; if M

must have the d-SC1P, then we call the resulting problem d-SC1P-Set Cover.
For an illustration of the following observation, see Fig. 1.

Observation 1 Rectangle Stabbing and 2-SC1P-Set Cover are equiv-
alent: There is a polynomial-time computable one-to-one mapping between in-
stances of Rectangle Stabbing and instances of 2-SC1P-Set Cover that
leaves the parameter k unchanged and maps yes-instances to yes-instances and
no-instances to no-instances.

3 W[1]-Completeness of Rectangle Stabbing

In this section, we prove that, for the parameter k, 2-SC1P-Set Cover is W[1]-
hard and 2-C1P-Set Cover is in W[1], which implies the W[1]-completeness
of Rectangle Stabbing.

3.1 W[1]-Hardness of Rectangle Stabbing

We give a fixed-parameter reduction from the problem Multicolored Clique
defined below to 2-SC1P-Set Cover—the W[1]-hardness of Rectangle Stab-
bing then follows from the W[1]-hardness of Multicolored Clique [5] and
the equivalence between 2-SC1P-Set Cover and Rectangle Stabbing.Multi
olored Clique
Input: An undirected k-colorable graph G = (V, E), a positive integer k, and a

k-coloring c : V → {1, . . . , k} for G.
Question: Is there a size-k clique in G?

The basic scheme of the reduction. The basic approach of our reduction is
similar to the one used in the W[1]-hardness proof for 3-SC1P-Set Cover [2].
However, due to the more restricted nature of 2-SC1P-Set Cover, the tech-
nical details are more involved.

We use the “Multicolored Clique reduction technique” [5], where the key
idea is to use an alternative, equivalent formulation of Multicolored Clique:
Given an undirected k-colorable graph G = (V,E), a positive integer k, and a
k-coloring c : V → {1, . . . , k} for G, find a set E′ ⊆ E with |E′| =

(

k
2

)

and a
set V ′ ⊆ V with |V ′| = k that satisfy the following three constraints:

Constraint 1: For every unordered pair {a, b} of colors from {1, . . . , k}, the edge
set E′ contains an edge whose endpoints are colored with a and b.

Constraint 2: For every color from {1, . . . , k}, the vertex set V ′ contains a vertex
of this color.

Constraint 3: If E′ contains an edge {u, v}, then V ′ contains the vertices u

and v.

Clearly, this formulation of Multicolored Clique is equivalent to the original
definition. Given an instance (G, k, c) of Multicolored Clique, we construct



an equivalent instance (M,k′) of 2-SC1P-Set Cover based on this alternative
formulation. The standard approach for such a construction would be to create
a matrix M with |V | + |E| columns, one column for each vertex and each edge
of G, and to set k′ = k +

(

k
2

)

. The rows of M would have to be constructed
in such a way that any solution C ′ for 2-SC1P-Set Cover on (M,k′) corre-
sponded to a solution (E′, V ′) as described above for Multicolored Clique
on the instance (G, k, c). That is, the rows of M would have to enforce that Con-
straints 1–3 are satisfied. The problem with this standard approach is that the
resulting matrix M does not have the 2-SC1P. Therefore, we use a construction
that is based on the same ideas, but involves more columns and rows. In order to
obtain a matrix that has the 2-SC1P, we add not one, but three columns to M

for every edge e in G. Hence, an instance (G, k, c) of Multicolored Clique
is mapped to an instance (M,k′), where k′ = 3 ·

(

k
2

)

+ k.
To describe the details of M ’s construction, let the color of an edge {u, v},

denoted d({u, v}), be the set of colors of its endpoints, that is, d({u, v}) :=
{c(u), c(v)}. We assume that the edges E = {e1, . . . , e|E|} and vertices V =
{v1, . . . , v|V |} of G are ordered in such a way that edges and vertices of the
same color appear consecutively. For every edge color {a, b}, we define: E{a,b} :=
{e ∈ E | d(e) = {a, b}}, first({a, b}) := min{p ∈ {1, . . . , |E|} | d(ep) = {a, b}},
and last({a, b}) := max{p ∈ {1, . . . , |E|} | d(ep) = {a, b}}. The details of the
construction of M read as follows, see also Fig. 2.

The columns of M . The matrix M has 3 · |E| + |V | columns, partitioned
into two sets C1 and C2. The column set C1 consists of two subsets of columns:
a subset D1 consisting of the columns c1

1, . . . , c
1
|E|, and a subset D2 consisting

of the columns c2
1, . . . , c

2
|E|. The column set C2 also consists of two subsets of

columns: the subset D3 consisting of the columns c3
1, . . . , c

3
|V |, and the subset D4

consisting of the columns c4
1, . . . , c

4
|E|.

These columns are ordered as follows in M . The leftmost 2 · |E| columns
of M are those from C1, the remaining |V | + |E| columns are those from C2.
The columns from C1 are ordered in such a way that columns corresponding
to edges of the same color appear consecutively. More precisely, for every edge
color {a, b}, there are 2 · |E{a,b}| consecutive columns

c1
first({a,b}), . . . , c

1
last({a,b}), c

2
first({a,b}), . . . , c

2
last({a,b}).

The columns from C2 are ordered as follows: To the right of the columns from C1,
there are the |V | columns c3

1, . . . , c
3
|V |. The rightmost |E| columns of M , finally,

are the columns c4
1, . . . , c

4
|E|. Intuitively speaking, every column c1

p ∈ C1, every

column c2
p ∈ C1, and every column c4

p ∈ C2 one-to-one corresponds to the
edge ep ∈ E, and every column c3

q ∈ C2 one-to-one corresponds to the vertex vq ∈
V .

The rows of M . The rows of M have to ensure that every solution C ′ for
2-SC1P-Set Cover on (M,k′ = 3 ·

(

k
2

)

+ k) corresponds to a subset of edges
and vertices of G satisfying Constraints 1–3. Since there are three columns in M

for every edge in G, we need four types of rows:
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Fig. 2. Example for the construction of M in the W[1]-hardness proof for 2-SC1P-
Set Cover. We assume that in G there are exactly two red vertices v2, v3 and exactly
three blue vertices v7, v8, v9, among vertices of other colors. Moreover, the only edges
between red and blue vertices are e4, e5, e6, e7 with e5 = {v2, v8}.

Rows of Type 1 and 2 ensure that any set of k′ columns that forms a so-
lution for 2-SC1P-Set Cover contains exactly

(

k
2

)

columns from D1—one of

each edge color—,
(

k
2

)

columns from D2—one of each edge color—,
(

k
2

)

columns
from D4—one of each edge color—, and k columns from D3—one of each vertex
color. Type-3 rows ensure that the columns chosen from D1, D2, and D4 are
consistent: if a solution contains the column c1

j , then it must contain c4
j , and

vice versa; analogously, if a solution contains the column c2
j , then it must con-

tain c4
j , and vice versa. Finally, Type-4 rows ensure that if a solution contains

a column c1
j (and, due to the Type-3 rows, the column c2

j ) corresponding to an
edge ej = {u, v}, then it also contains the columns corresponding to the ver-
tices u and v. See Fig. 2 for an illustration of the following construction details.
The argument that the reduction works correctly is omitted.

Type-1 rows. For every edge color {a, b}, M contains three rows r1
{a,b},D1 ,

r1
{a,b},D2 , and r1

{a,b},D4 .

For x = 1, 2, 4, the row r1
{a,b},Dx has a 1 in every column cx

j ∈ Dx with d(ej) =

{a, b}, and 0s in all other columns.



Type-2 rows. For every vertex color a ∈ {1, . . . , k}, M contains a row r2
a

which has a 1 in every column c3
j ∈ D3 with c(vj) = a, and 0s in all other

columns.
Observe that the rows of the Types 1 and 2 together with the value of k′

force every solution for 2-SC1P-Set Cover on (M,k′) to contain exactly one
column from each of D1, D2, and D4 for every edge color and exactly one column
from D3 for every vertex color.

Type-3 rows. For every edge color {a, b}, M contains a set of 2·(|E{a,b}|−1)
rows r3

{a,b},D1,i
and a set of 2 · (|E{a,b}| − 1) rows r3

{a,b},D2,i
, where in both

cases 1 ≤ i ≤ 2 · (|E{a,b}| − 1).
A row r3

{a,b},Dx,i
with x ∈ {1, 2} and i ∈ {1, . . . , |E{a,b}| − 1} has a 1 in

every column cx
j ∈ Cx with d(ej) = {a, b} and j < first({a, b}) + i and every

column c4
j ∈ C4 with d(ej) = {a, b} and j ≥ first({a, b}) + i, and 0s in all other

columns.
A row r3

{a,b},Dx,i
with i ∈ {|E{a,b}|, . . . , 2 · (|E{a,b}| − 1)} has a 1 in every

column cx
j ∈ Cx with d(ej) = {a, b} and j ≥ first({a, b}) + i− (|E{a,b}| − 1) and

every column c4
j ∈ C4 with d(ej) = {a, b} and j < first({a, b})+ i−(|E{a,b}|−1),

and 0s in all other columns.
To see that the columns selected from Dx, x ∈ {1, 2}, and D4 are consis-

tent in every solution for 2-SC1P-Set Cover on (M,k′), observe that tak-
ing a column cx

j into the solution, this column does not contain a 1 from the

rows r3
{a,b},Dx,j−first({a,b}) and r3

{a,b},j−first({a,b})+|E{a,b}|
(if existing). Hence, the

single column from D4 belonging to the solution must be c4
j .

Type-4 rows. For every edge ep = {vq1
, vq2

} ∈ E, the matrix M contains
two rows r4

ep,vq1
and r4

ep,vq2
.

For i = 1, 2, the row r4
ep,vqi

has a 1 in every column c1
j ∈ C1 with d(ej) = d(ep)

and j > p, every column c2
j ∈ C2 with d(ej) = d(ep) and j < p, and the

column c3
qi

∈ C3, and 0s in all other columns.

Theorem 1. 2-SC1P-Set Cover, 2-C1P-Set Cover, and Rectangle Stab-
bing are W[1]-hard with respect to the parameter k.

Using a modification of the above construction, we can also show:

Theorem 2. The restricted variant of Rectangle Stabbing where all rect-
angles in R are squares having the same width and the same height is W[1]-hard
with respect to the parameter k.

3.2 Membership of Rectangle Stabbing in W[1]

The membership of Rectangle Stabbing, and, more general, of 2-C1P-Set
Cover, in W[1] can be shown in analogy to the proof given by Marx [15] for
Dominating Set on intersection graphs of axis-parallel rectangles: One exhibits
a fixed-parameter reduction to the W[1]-complete [3] problem Short Turing
Machine Acceptance, defined as follows.



Short Turing Ma
hine A

eptan
e
Input: The description of a nondeterministic Turing machine N and a positive

integer k′.
Question: Can N stop within k′ steps on the empty input string?

To reduce 2-C1P-Set Cover to Short Turing Machine Acceptance,
one constructs, for a given instance (M,k) of 2-C1P-Set Cover, a nondeter-
ministic Turing machine N that can stop after k′ = f(k) steps on the empty
input string iff (M,k) is a yes-instance. Intuitively speaking, this Turing ma-
chine N nondeterministically decides in f(k) steps whether the tuple (M,k),
which is encoded into the internal states and the transition function of N , is a
yes-instance of 2-C1P-Set Cover or not, and correspondingly it either stops
after f(k) steps or goes into an infinite loop (details are omitted).

Theorem 3. For the parameter k, 2-C1P-Set Cover, 2-SC1P-Set Cover
and Rectangle Stabbing are in W[1].

4 Stabbing Nonoverlapping Squares of the Same Size

In this section, we consider the natural restriction of Rectangle Stabbing
where no two rectangles from R “overlap”. Two rectangles r1, r2 overlap if there
exist a vertical line v and a horizontal line h that both intersect r1 as well as r2.
Moreover, we further restrict the problem by demanding that all rectangles in R

are squares of the same size, meaning that there is a number b such that for
every rectangle r in R we have wh(r) = ht(r) = b. We call this restricted
problem variant Disjoint b-Square Stabbing; it is equivalent to the stabbing
problem where a set of unit squares in the plane is given (but no lines are given)
and a minimum number of horizontal and vertical lines shall be inserted that
stab all the squares.

Basic Observations. We show that, one the one hand, the problem Disjoint
b-Square Stabbing is NP-complete for every b ≥ 2, while, on the other hand,
it is polynomial-time solvable for b = 1. To prove the NP-hardness, one can
reduce from the NP-complete [7] problem Vertex Cover (details omitted).

Theorem 4. Disjoint b-Square Stabbing is NP-complete for every b ≥ 2.

Complementing Theorem 4, one can see that Disjoint b-Square Stabbing
is polynomial-time solvable for b = 1. To this end, observe that every instance
of Disjoint 1-Square Stabbing is equivalent to an 2-SC1P-Set Cover in-
stance (M,k) where the column set of M can be partitioned into two sets C1

and C2 of consecutive columns such that every row of M contains exactly one 1
in a column of C1 and one 1 in a column of C2. Such a matrix can be interpreted
as a bipartite graph, and, hence, (M,k) corresponds to an instance of Vertex
Cover on bipartite graphs. Vertex Cover on bipartite graphs, however, is
known to be polynomial-time solvable.

Fixed-parameter tractability. We show that Disjoint b-Square Stabbing
is in FPT with respect to the parameter k. To this end, we present a search-tree



algorithm, that is, a recursive algorithm that in each recursive step branches
into a bounded number of cases. More precisely, in each step the algorithm first
determines a subset of the given lines in such a way that every size-k solution
for the Rectangle Stabbing instance must contain at least one of these lines,
and then recursively tests which of these lines leads to the desired solution.

In order to bound the size of the above subsets of lines and, thus, the number
of cases to branch into, in each step a set of data reduction rules is applied. Each
of these rules takes as input an instance (L,R, k) of Rectangle Stabbing and
outputs in polynomial time an instance (L′, R′, k′) of Rectangle Stabbing
such that |L′| ≤ |L|, |R′| ≤ |R|, k′ ≤ k, and (L′, R′, k′) is a yes-instance iff
(L,R, k) is a yes-instance. An instance to which none of the rules can be applied
is called reduced. Our data reduction rules read as follows.

Rule 1: If there are two lines l1, l2 ∈ L such that every rectangle in R that is
intersected by l2 is also intersected by l1, then delete l2.

Rule 2: If there are two rectangles r1, r2 ∈ R such that every line in L that
intersects r1 also intersects r2, then delete r2.

Rule 3: If there are k+2 rectangles r1, . . . , rk+2 ∈ R such that no horizontal line
intersects more than one of these rectangles and, for each i ∈ {1, . . . , k+
1} we have lx(ri) ≥ lx(rk+2) and rx(ri) ≤ rx(rk+2), then delete rk+2.

While the correctness of Rules 1 and 2 is obvious, the correctness of Rule 3
follows from the fact that k horizontal lines cannot intersect all rectangles
r1, . . . , rk+1. Note that the data reduction rules may transform an instance
of Disjoint b-Square Stabbing into an instance of Rectangle Stabbing
where the rectangles have heights or widths smaller than b; anyway, we call such
an instance a reduced instance of Disjoint b-Square Stabbing.

The following observation is an immediate consequence of Rule 1.

Observation 2 In a reduced problem instance of Rectangle Stabbing, for
every vertical line vj ∈ V , there exist rectangles r, r′ ∈ R with lx(r) = j

and rx(r′) = j.

Observation 3 After applying any sequence of data reduction rules to an in-
stance of Disjoint b-Square Stabbing, for any two rectangles r1, r2 ∈ R, we
have lx(r1) > lx(r2) ⇒ rx(r1) ≥ rx(r2) and rx(r1) < rx(r2) ⇒ lx(r1) ≤ lx(r2).

The latter observation follows from the fact that every instance of Disjoint
b-Square Stabbing has the property described in the observation, and none
of the data reduction rules destroys the property. The next observation follows
directly from Rule 3; the proof of Lemma 1 is omitted.

Observation 4 In a reduced instance of Disjoint b-Square Stabbing, for
every j ∈ {1, . . . , n} there are at most k + 1 rectangles r with lx(r) = j.

Lemma 1. For every rectangle r in a reduced instance, there are at most k

rectangles r′ with rx(r′) < rx(r) and lx(r′) ≥ lx(r), and all these rectangles
have lx(r′) = lx(r).



Lemma 2. Let r be a rectangle with wh(r) > xk + 1 for x ≥ 2 in a reduced
instance. Then there exists a rectangle r′ with lx(r′) < lx(r) and (x − 1)k + 1 <

wh(r′) ≤ xk + 1.

Proof. We show that the lemma is true if r has minimum lx(r) under all rect-
angles whose width is greater than xk + 1; this suffices to prove the lemma.

Observation 2 implies the existence of a rectangle r′ with rx(r′) = p for
every p ∈ {lx(r), . . . , rx(r) − 1}. Due to Lemma 1, at most k of these rectangles
can have lx(r′) ≥ lx(r), and, hence, there exists p ∈ {rx(r)−k−1, . . . , rx(r)−1}
such that there is a rectangle r′ with rx(r′) = p and lx(r′) < lx(r). For the
width of r′ we have wh(r′) = rx(r′) − lx(r′) + 1 ≥ rx(r) − k − 1 − lx(r′) +
1 > rx(r) − k − 1 − lx(r) + 1 = wh(r) − k − 1. Due to the selection of r, no
rectangle r′ with lx(r′) < lx(r) can have wh(r′) > xk + 1, and, hence, we have
(x − 1)k + 1 < wh(r′) ≤ xk + 1. ⊓⊔

Lemma 3. If a reduced instance contains a rectangle r with wh(r) > 2k + 1,
then there exists a rectangle r′ with the following properties.

1. k + 1 < wh(r′) ≤ 2k + 1.
2. There are at least k rectangles r′′ with rx(r′′) ∈ {lx(r′), . . . , rx(r′) − 1}.
3. All rectangles r′′ with rx(r′′) ∈ {lx(r′), . . . , rx(r′) − 1} have lx(r′′) ≤ lx(r′).
4. All rectangles r′′ with rx(r′′) ∈ {lx(r′), . . . , rx(r′)−1} have wh(r′′) ≤ 2k +1.

Proof. The existence of a rectangle r′ with k +1 < wh(r′) ≤ 2k +1 follows from
Lemma 2. Select a rectangle r′ in such a way that k + 1 < wh(r′) ≤ 2k + 1
and lx(r′) is minimum under this property. Clearly, r′ fulfills properties 2 and 3
because of Observations 2 and 3, respectively. Now assume, for the sake of a
contradiction, that there is a rectangle r′′ with rx(r′′) ∈ {lx(r′), . . . , rx(r′) − 1}
and wh(r′′) > 2k + 1. Clearly, we have lx(r′′) < lx(r′). Together with Lemma 2,
this implies the existence of a rectangle r′′′ that has lx(r′′′) < lx(r′′) < lx(r′)
and k + 1 < wh(r′′′) ≤ 2k + 1, contradicting the selection of r′. ⊓⊔

Theorem 5. Disjoint b-Square Stabbing is solvable in (4k+1)k ·nO(1) time.

Proof. If all rectangles have width at most 2k + 1, the instance can be solved
in (2k + 2)k · nO(1) time [2]. Otherwise, there is a rectangle r′ as described in
Lemma 3, such that the vertical line going through lx(r′) intersects more than k

rectangles whose width is at most 2k+1. Since no horizontal line intersects more
than one of these rectangles, not all of them can be stabbed by horizontal lines.
Therefore, the solution must contain a vertical line intersecting at least two of
these rectangles. There are at most 4k + 1 such lines. ⊓⊔

5 Open Questions

Is Rectangle Stabbing in FPT when the input consists of nonoverlapping
arbitrary rectangles? Is there a polynomial-size problem kernel for Disjoint b-
Square Stabbing? Is d-Dimensional Rectangle Stabbing in W[1] when
parameterized by both k and d?
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16. S. Mecke, A. Schöbel, and D. Wagner. Station location – complexity and approx-
imation. In Proc. 5th ATMOS. IBFI Dagstuhl, Germany, 2005.

17. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

18. G. Xu and J. Xu. Constant approximation algorithms for rectangle stabbing and
related problems. Theory Comput. Syst., 40(2):187–204, 2007.


