
Exact algorithms for finding k disjoint triangles in an

arbitrary graph∗

Mike Fellows† Pinar Heggernes‡ Frances Rosamond†

Christian Sloper‡ Jan Arne Telle‡

Abstract

We consider exact algorithms for the NP-complete problem of deciding whether
an input graph on n vertices has k vertex-disjoint copies of a fixed graph H. For
H = K3 (the triangle) we give an O(22k log k+1.869kn2) algorithm, and for general H an
O(2k|H| log k+2k|H| log |H|n|H|) algorithm. We introduce a preprocessing (kernelization)
technique based on crown decompositions of an auxiliary graph. For H = K3 this leads
to a preprocessing algorithm that reduces an arbitrary input graph of the problem to
a graph on O(k3) vertices in polynomial time.

1 Introduction

For a fixed graph H and an input graph G, the H-packing problem asks for the maximum
number of vertex-disjoint copies of H in G. The K2-packing problem, which is equivalent to
maximum matching, played a central role in the history of classical computational complex-
ity. The first step towards the dichotomy of “good” (polynomial-time) versus “presumably-
not-good” (NP-hard) was made in a paper on maximum matching from 1965 [E65], which
gave a polynomial time algorithm for that problem. On the other hand, the K3-packing
problem, which is our main concern in this paper, is NP-hard [HK78].

Recently, there has been a growing interest in the area of exact exponential-time algorithms
for NP-hard problems. When measuring time in the classical way, simply by the size of
the input instance, the area of exact algorithms for NP-hard problems lacks the classical
dichotomy of good (P) versus presumably-not-good (NP-hard) [W03]. However, if in the
area of exact algorithms for NP-hard problems we instead measure time in the parameterized
way, then we retain the classical dichotomy of good (FPT - Fixed Parameter Tractable)
versus presumably-not-good (W [1]-hard) [DF99]. It therefore seems that the parameterized
viewpoint gives a richer complexity framework. In fact, a formal argument for this follows
from the realization that the non-parameterized viewpoint, measuring time by input size,
is simply a special case of the parameterized viewpoint with the parameter chosen to be
the input size. Parameterized thusly, any problem is trivially FPT and the race for the
best FPT algorithm is precisely the same as the race for the best non-parameterized exact
algorithm. Note that for any optimization or decision problem, there are many interesting
possibilities for choice of parameter, that can be guided by both practical and theoretical

∗This work was initiated while the first and third authors were visiting the University of Bergen
†School of Electrical Engineering and Computer Science, University of Newcastle, Australia. Email:

{mfellows, fran}@cs.newcastle.edu.au
‡Department of Informatics, University of Bergen, Norway. Email: {pinar, sloper, telle}@ii.uib.no

1

considerations, see for example [F03] for a discussion of five different parameterizations of
a single problem. In our opinion, the relevant discussion for the field of exact algorithms
for NP-hard problems is therefore not “parameterized or non-parameterized?” but rather
“which parameter?”

In this paper our focus is on parameterized exact algorithms for deciding whether a graph
G has k disjoint copies of K3, with the integer k being our parameter. On input (G, k),
where G is a graph on n vertices, an FPT algorithm for this problem is one with runtime
O(nαf(k)), for a constant α and an unrestricted function f(k). We want, of course, both α
and the growth rate of f(k) to be as small as possible.

A practical spinoff from the field of parameterized exact algorithms for NP-hard problems
has been a theoretical focus on the algorithmic technique of preprocessing, well-known from
the heuristic algorithms community. In fact, the parameterized problems having FPT al-
gorithms are precisely the parameterized problems where preprocessing can in polynomial
time reduce a problem instance (G, k) to a kernel, i.e., a decision-equivalent problem in-
stance (G′, k′) where the size of G′ is bounded by a function of k (only), and where also
k′ ≤ k [DFS97]. One direction of this fact is trivial, since any subsequent brute-force algo-
rithm on (G′, k′) would give an overall FPT algorithm. In the other direction, assume we
have an FPT algorithm with runtime O(nαf(k)) and consider an input (G, k) on n vertices.
If n ≥ f(k) then the runtime of the FPT algorithm on this instance is in fact polynomial
and can be seen as a reduction to the trivial case. On the other hand, if n ≤ f(k) then the
instance (G, k) already satisfies the kernel requirements. Note that in this case the kernel
size f(k) is exponential in k, and a smaller kernel is usually achievable. For this reason, in
the field of parameterized algorithms for NP-hard problems, it can be argued that there are
two distinct races [F03]:

• Find the fastest FPT algorithm for the problem.

• Find the smallest polynomial-time computable kernelization for the problem.

In this paper, we enter the parameterized K3-packing problem into both these races, giving
on the one hand an O(22k log k+1.869kn2) FPT algorithm, and on the other hand an O(k3)
kernelization. Our FPT algorithm is derived by an application of a fairly new technique
known as greedy localization [JZC04], and our kernelization algorithm by a non-standard
application of the very recently introduced notion of Crown Reduction Rules [CFJ03, F03].
We end the paper by asking how well these two results on K3-packing generalize to H-
packing. It turns out that the FPT algorithm generalizes quite easily, giving FPT algorithms
for deciding whether an input graph G has k disjoint copies of an arbitrary connected H.
However, we presently do not see how to generalize the kernelization algorithm.

The next section gives some basic graph terminology. We then proceed in Sections 3, 4 and
5 with the kernelization results, before continuing with the FPT algorithm in Section 6 for
K3 and in Section 7 for general H.

2 Preliminaries

We assume simple, undirected, connected graphs G = (V,E), where |V | = n. The neighbors
of a vertex v are denoted by N(v). For a set of vertices A ⊆ V , N(A) = {v �∈ A | uv ∈ E
and u ∈ A}, and the subgraph of G induced by A is denoted by G(A). For ease of notation,
we will use informal expressions like G \ u to denote G(V \ {u}), and G \ e to denote

2

(V,E \ {e}), where u is a vertex and e is an edge in G. A subset S of V is a separator if
G \ S is disconnected.

An H-packing W of G is a collection of disjoint copies of graph H in G. We will use V (W)
to denote the vertices of G that appear in W , and E(W) to denote the edges. A matching
is a K2-packing.

We will in the following two sections describe a set of reduction rules. If any of these rules
can be applied to G, we say that G is reducible, otherwise irreducible.

3 Reduction rules for K3-packing

Let us start with a formal definition of the problem that we are solving:

k-K3-packing (Triangle Packing)
Instance: Graph G = (V,E)
Parameter: k
Question: Does G have k disjoint copies of K3?

We say that a graph G has a k-K3-packing if the answer to the above question is, “yes.” In
this section, we identify vertices and edges of the input graph that can be removed without
affecting the solution of the k-K3-packing problem.

Definition 1 If vertices a, b, and c induce a K3, we say that vertex a sponsors edge bc.
Likewise, edge bc sponsors vertex a.

We start with two simple observations that also give preprocessing rules useful to delete
vertices and edges that cannot participate in any triangle.

Reduction Rule 1 If e ∈ E has no sponsor then G has a k-K3-packing ⇔ G \ e has a
k-K3-packing.

Reduction Rule 2 If u ∈ V has no sponsor then G has a k-K3-packing ⇔ G \ u has a
k-K3-packing.

Both observations are trivially true, and let us remove vertices and edges from the graph so
that we are left with a graph containing only vertices and edges that could potentially form
a K3.

Reduction Rule 3 If u ∈ V sponsors at least 3k − 2 disjoint edges then G has a k-K3-
packing ⇔ G \ u has a (k − 1)-K3-packing.

Proof. (⇒:) This direction is clear as removing one vertex can decrease the number of K3s
by at most one.
(⇐:) If G\u has a (k−1)-K3-packing S, then S can use vertices from at most 3(k−1) = 3k−3
of the disjoint edges sponsored by u. This leaves at least one edge that can form a K3 with
u, thus raising the number of K3s to k. �

3

4 Reducing independent sets - crown reduction

Motivated by the following simple reduction rule, we will in this section give a generalization
of it.

Reduction Rule 4 If ∃u, v ∈ V such that N(u) = N(v) = {a, b} and ab ∈ E then G has
a k-K3-packing ⇔ G \ u has a k-K3-packing.

Proof. This is trivial as it is impossible to use both u and v in any K3-packing. �

This reduction rule identifies a redundant vertex and removes it. The vertex is redundant,
because it has a stand-in that can form a K3 in its place and there is no use for both vertices.
Generalizing, we try to find a set of vertices such that there is always a distinct stand-in for
each vertex in the set.

Definition 2 A crown decomposition (H,C,R) in a graph G = (V,E) is a partitioning of
the vertices of the graph into three sets H, C, and R that have the following properties:

1. H (the head) is a separator in G such that there are no edges in G between vertices
belonging to C and vertices belonging to R.

2. C = Cu ∪ Cm (the crown) is an independent set in G.

3. |Cm| = |H|, and there is a perfect matching between Cm and H.

Crown-decomposition is a recently introduced idea that supports nontrivial and powerful
preprocessing (reduction) rules for a wide variety of problems, and that performs very well
in practical implementations [CFJ03, F03, ACFL04]. It has recently been shown that if
a graph admits a crown decomposition, then a crown decomposition can be computed in
polynomial time [AS04]. The following theorem can be deduced from [CFJ03, page 7], and
[F03, page 8].

Theorem 1 Any graph G with an independent set I, where |I| ≥ n
2 , has a crown decompo-

sition (H,C,R), where H ⊆ N(I), that can be found in linear time, given I.

For most problems, including k-K3-packing, it is not clear how a crown decomposition can
directly provide useful information. We introduce here the idea of creating an auxiliary graph
model where a crown decomposition in the auxiliary graph is used to identify preprocessing
reductions for the original graph.

For k-K3-packing we will show that an auxiliary graph model can be created to reduce
large independence sets in the problem instance. Consider an independent set I in a graph
G. Let EI be the set of edges that are sponsored by the vertices of I.

The auxiliary model that we consider is a bipartite graph GI where we have one vertex ui

for every vertex vi in I and one vertex fj for every edge ej in EI . For simplicity, we let
both sets {ej | ej ∈ EI} and {fj | ej ∈ EI} be denoted by EI . The edges of GI are defined
as follows: let uifj be an edge in GI if and only if ui sponsors fj .

We now prove the following generalization of Reduction Rule 4.

4

Reduction Rule 5 If GI has a crown decomposition (H,Cm ∪Cu, R) where H ⊆ EI then
G has a k-K3-packing ⇔ G \ Cu has a k-K3-packing.

Proof. Assume on the contrary that GI has a crown decomposition (H,Cm∪Cu, R), where
H ⊆ EI and G has a k-K3-packing W ∗ but G \Cu has no k-K3-packing. This implies that
some of the vertices of Cu were used in the k-K3-packing W ∗ of G.

Let H∗ be the set of vertices in H whose corresponding edges in G use vertices from C
to form K3s in the k-K3-packing W ∗ of G. Note that vertices in Cu can only form K3s
with edges of G that correspond to vertices in H. Observe that each edge corresponding
to a vertex in H∗ uses exactly one vertex from C. Further, |H∗| ≤ |H|. By these two
observations it is clear that every edge whose corresponding vertex is in H∗ can be assigned
a vertex from Cm to form a K3. Thus Cu is superfluous, contradicting the assumption. �

Observation 1 If a bipartite graph G = (V ∪V ′, E) has two crown decompositions (H,C,R)
and (H ′, C ′, R′) where H ⊆ V and H ′ ⊆ V , then G has a crown decomposition (H ′′ =
H ∪ H ′, C ′′ = C ∪ C ′, R′′ = R ∩ R′).

It is easy to check that all properties of a crown decomposition hold for (H ′′, C ′′, R′′).

Lemma 1 If G has an independent set I such that |I| > 2|EI | then G is reducible.

Proof. Assume on the contrary that G has an independent set I such that |I| > 2|EI | but
G is not reducible.

By Theorem 1 the bipartite model GI as described above has a crown decomposition (H,C =
Cm ∪ Cu, R) where H ⊆ N(I) and consequently C ⊆ I. If |I \ C| > |EI | then GI \ C has
a crown decomposition (H ′, C ′, R′), where H ′ ⊂ N(I). By Observation 1 (H,C,R) and
(H ′, C ′, R′) could be combined to form a bigger crown. Let (H ′′, C ′′ = C ′′

m ∪ C ′′
u , R′′) be

the largest crown decomposition that can be obtained by repeatedly finding a new crown
in I \ C and combining it with the existing crown decomposition to form a new head and
crown.

By our assumption C ′′
u = ∅. Since |C ′′

m| = |H ′′| ≤ EI and it follows from Theorem 1 that
|I\C ′′

m| ≤ |EI | (otherwise a new crown could be formed), we have that |I| = |C ′′
m|+|I\C ′′

m| ≤
|EI | + |EI | ≤ 2|EI | contradicting the assumption that |I| > 2|EI |. �

5 Computing a cubic kernel

We now introduce a polynomial time algorithm that either produces a k-K3-packing or finds
a valid reduction of any input graph G = (V,E) of at least a certain size. We show that
this algorithm gives an O(k3) kernel for k-K3-packing.

The algorithm has the following steps:

1. Greedily, find a maximal K3-packing W in G. If |V (W)| ≥ 3k then Accept.

2. Find a maximal matching Q in G \ V (W). If a vertex v ∈ V (W) sponsors more than
3k − 3 matched edges, then v can be reduced by Reduction Rule 3.

5

3. If possible, reduce the independent set I = V \ (V (W) ∪ V (Q)) with the technique
described in Section 4.

We now give the following lemma to prove our result:

Lemma 2 If |V | > 108k3 − 72k2 − 18k then the preprocessing algorithm will either find a
k-K3-packing or it will reduce G = (V,E).

Proof. Assume on the contrary to the stated lemma that |V | > 108k3 − 72k2 − 18k, but
that the algorithm produced neither a k-K3-packing nor a reduction of G.

By the assumption the maximal packing W is of size |V (W)| < 3k.

Let Q be the maximal matching obtained by step 2 of the algorithm.

Claim 1 |V (Q)| ≤ 18k2 − 18k

Proof. Assume on the contrary that |V (Q)| > 18k2 − 18k. Observe that no edge
in G\V (W) can sponsor a vertex in G\V (W) as this would contradict that W is
maximal, therefore all edges in the the maximal matching Q are sponsored by at
least one vertex in V (W). If |V (Q)| > 18k2−18k, Q contains more than 9k2−9k

edges. Thus at least one vertex v ∈ V (W) sponsors more than 9k2−9k
3k = 3k − 3

edges. Thus v should have been removed by Reduction Rule 3, contradicting the
assumption that no reduction of G took place. We have reached a contradiction,
thus the assumption that |V (Q)| > 18k2 − 18k must be wrong. �

Let I = V (V (W) ∪ V (Q)). Note that I is an independent set.

Claim 2 |I| ≤ 108k3 − 90k2

Proof. Assume on the contrary that |I| > 108k3 − 90k2. Observe that each
edge that is sponsored by a vertex of I is either in the subgraph of G induced
by V (W), or is an edge between V (W) and V (Q). The are at most |EI | =
|V (Q)||V (W)| + |V (W)|2 ≤ (18k2 − 18k) · 3k + (3k)2 ≤ 54k3 − 45k2 such edges.
By Lemma 1 there are no more than 2|EI | = 108k3 − 90k2 vertices in I, which
contradicts the assumption that |I| > 108k3 − 90k2. �

Thus the total size |V | = |V (W)| + |V (Q)| + |I| ≤ 3k + 18k2 − 18k + 108k3 − 90k2 =
108k3 − 72k2 − 18k. This contradicts the assumption that |V | > 108k3 − 72k2 − 18k.

�

Corollary 1 Any instance (G, k) of k-K3-packing can be reduced to a problem kernel of
size O(k3).

Proof. This follows from Lemma 2, as we can repeatedly run the algorithm until it fails to
reduce the graph further. By Lemma 2 the resulting graph is then of size O(k3). �

Note that a O(k3) kernel gives us a trivial FPT-algorithm by testing all O(
(
k3

3k

)
) subsets in

a brute force manner. This leads to an O(29k log k + poly(n, k)) algorithm. However, we will
show in the next section that another FPT technique yields a faster algorithm.

6

6 Winning the FPT runtime race

In this section we give a faster FPT-algorithm using the technique of “greedy localization”
and a bounded search tree.

We begin with the following crucial observation.

Observation 2 Let W be a maximal K3-packing, and let W ∗ be a k-K3-packing. Then for
each K3 C of W ∗ we have that V (C) ∩ V (W) �= ∅.

Proof. Assume on the contrary that there exists a K3 C in W ∗ such that V (C)∩V (W) = ∅.
This implies that V (C)∪V (W) is a K3-packing contradicting that W is a maximal packing.
�

Theorem 2 It is possible to determine whether a graph G = (V,E) has a k-K3-packing in
time O(22k log k+1.869kn2).

Proof. Let W be a maximal K3-packing. If |V (W)| ≥ 3k we have a K3-packing. Otherwise,
create a search tree T . At each node we will maintain a collection Si = Si

1, S
i
2, . . . , S

i
k of

vertex subsets. These subsets represent the k triangles of the solution, and at the root node
all subsets are empty.

From the root node, create a child i for every possible subset Wi of V (W) of size k. Let the
collection at each node i contain k singleton sets, each containing a vertex of Wi.

We say that a collection Si = Si
1, S

i
2, . . . , S

i
k is a partial solution of a k-K3-packing W ∗ with

k disjoint triangles W ∗
1 ,W ∗

2 , . . . ,W ∗
k if and only if Si

j ⊆ V (W ∗
j) for 1 ≤ j ≤ k.

For a child i, consider its collection Si = Si
1, S

i
2, . . . , S

i
k. Add vertices to Si

1 such that Si
1

induces a K3 in G, continue in a greedy fashion to add vertices to Si
2, S

i
3 and so on. If we

can complete all k subsets we have a k-K3 packing. Otherwise, let Si
j be the set first set

which is not possible to complete, and let V ′ be the vertices we have added to Si so far. We
can now make the following claim.

Claim 3 If Si = Si
1, S

i
2, . . . , S

i
k is a partial solution then there exists a vertex v ∈ V ′ such

that Si = Si
1, . . . , (S

i
j ∪ {v}), . . . , Si

k is a partial solution.

Proof. Assume on the contrary that Si = Si
1, S

i
2, . . . , S

i
k is a partial solution

but that there exists no vertex v ∈ V ′ such that Si = Si
1, (S

i
j ∪ {v}), . . . , Si

k is
a partial solution. This implies that V (W ∗

j) ∩ V ′ = ∅, but then we could add
V (W ∗

j) \ Si
j to Si

j to form a new K3, thus contradicting that it was not possible
to complete Si

j . �

We now create one child u of node i for every vertex in u ∈ V ′. The collection at child u is
Si = Si

1, (S
i
j ∪{u}), . . . , Si

k. This is repeated at each node l, until we are unable to complete
any set in node l’s collection, i.e. V ′ = ∅.

By Observation 2 we know that if there is k-K3-packing then one of the branchings from the
root node will have a partial solution. Claim 1 guarantees that this solution is propagated
down the tree until finally completed at level 2k.

7

At each level the collections S at the nodes grow in size, thus we can have at most 2k levels
in the search tree. Observe that at height h in the search tree |V ′| < 2k−h, thus fan-out at
height h is limited to 2k−h. The total size of the tree is then at most

(
3k
k

)
2k · (2k−1) · . . . =

(
3k
k

) · 2k! = (3k)!
k! . Using Stirling’s approximation and suppressing some constant factors we

have (3k)!
k! ≈ 3.654k · k2k = 22k log k+1.869k. At each node we need O(n2) time to maximize

the sets. Hence, the total running time is O(22k log k+1.869kn2) �

Note that it is, of course, possible to run the search tree algorithm from this section on the
kernel obtained in the previous section. The total running time is then O(22k log k+1.869kk6+
p(n, k)). This could be useful if n is much larger than k as the additive exponential (rather
than multiplicative) factor becomes significant.

7 Packing arbitrary graphs

In their paper from 1978 Hell and Kirkpatrick [HK78] prove that k-H-packing for any
connected graph H of 3 or more vertices is NP-complete. We will in this section show that
our search tree technique for k-K3-packing easily generalizes to arbitrary graphs H, thus
proving that packing any subgraph is in FPT .

k-H-packing
Instance: Graph G = (V,E)
Parameter: k
Question: Does G have at least k disjoint copies of H?

Theorem 3 It is possible to determine whether a graph G = (V,E) has a k-H-packing in
time O(2k|H| log k+2k|H| log |H|n|H|).

Proof. The proof is analogous to the proof of Theorem 2. However, as we no longer
can depend upon perfect symmetry in H (since H is not necessarily complete), we must
maintain a collection of ordered sequences at each tree-node. Each sequence represents a
partial H-subgraph.

The possible size of V ′ increases to k|H| − k. Then when we want to determine which v of
V ′ to add to the sequence, we must try every v in every position in H. Thus the fan-out
at each node increases to k|H|2 − k|H|. The height of the tree likewise increases to at most
k|H| − k. Thus the new tree size is

(
k|H|

k

)
(k|H|2 − k|H|)k|H|−k, which is strictly smaller

than kk|H||H|2k|H| or 2k|H| log k+2k|H| log |H|. �

8 Summary and open problems

Our main results in the two FPT races are:

(1) We have shown an O(k3) problem kernel for the problem of packing k K3s. We remark
that our approach here does generalize to packing Kts, for any fixed t, yielding an O(kt)
kernel.

(2) We have shown that for any fixed graph H, the problem of packing k Hs is in FPT with
a parameter function of the form O(2O(k log k)).

8

In addition to “upper bound” improvements to these initial results, which would be the
natural course for further research — now that the race(s) are on — it would also be
interesting to investigate lower bounds, if possible.

It would be interesting to investigate the “optimality” of the form of our FPT results in the
sense of [CJ03, DEFPR03]. Can it be shown that there is no O(2o(k)) FPT algorithm for
k-H-Packing unless FPT= M [1]? Can our result be improved to an FPT algorithm with
a single exponential parameter function of the form O(2O(k))?

Many parameterized problems admit linear problem kernels. In fact, it appears that most
naturally parameterized problems in APX are in FPT and have linear problem kernels.
However, it seems unlikely that all FPT problems admit linear kernels. We feel that Pack-
ing Kts is a natural candidate for an FPT problem where it may not be possible to improve
on O(kt) kernelization. Techniques for the investigation of lower bounds on kernelization
are currently lacking, but packing problems may be a good place to start looking for them.

References

[AS04] F. AbuKhzam and H. Suters, Computer Science Department, University of Ten-
nessee, Knoxville, private communications, Dec. 2003.

[ACFL04] F. Abu-Khzam, R. Collins, M. Fellows and M. Langston. Kernelization Algo-
rithms for the Vertex Cover Problem: Theory and Experiments. Proceedings ALENEX
2004, Springer-Verlag, Lecture Notes in Computer Science (2004), to appear.

[CFJ03] B. Chor, M. Fellows, and D. Juedes. Saving k Colors in Time O(n5/2). Manuscript,
2003.

[CJ03] L. Cai and D. Juedes. On the existence of subexponential parameterized algorithms.
Journal of Computer and System Sciences 67 (2003).

[DEFPR03] R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto-Rodriguez and F. Rosa-
mond. Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut and Related
Problems. Electronic Notes in Theoretical Computer Science 78 (2003), 205–218.

[DF99] R. Downey and M. Fellows. Parameterized Complexity Springer-Verlag (1999).

[DFS97] R. Downey, M. Fellows and U. Stege, Parameterized Complexity: A Framework
for Systematically Confronting Computational Intractability, in: Contemporary Trends
in Discrete Mathematics, (R. Graham, J. Kratochvil, J. Nesetril and F. Roberts, eds.),
AMS-DIMACS Series in Discrete Mathematics and Theoretical Computer Science 49,
pages 49-99, 1999.

[E65] J.Edmonds. Paths, trees and flowers, Can.J.Math., 17, 3, pages 449-467, 1965.

[F03] M.Fellows. Blow-ups, Win/Wins and Crown Rules: Some New Directions in FPT.
Proceedings WG 2003, Springer Verlag LNCS 2880, pages 1-12, 2003.

[HK78] P. Hell and D. Kirkpatrick. On the complexity of a generalized matching problem.
Proceedings of 10th ACM Symposium on theory of computing, pages 309-318, 1978.

[HS89] C. A. J. Hurkens, and A. Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems, SIAM J. Disc. Math. 2, pages 68-72, 1989.

[JZC04] W. Jia, C. Zhang and J. Chen. An efficient parameterized algorithm for m-set
packing, Journal of Algorithms, to appear.

9

[K91] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete, Inform.
Process. Lett. 37, pages 27-35, 1991.

[W03] G. Woeginger. Exact algorithms for NP-hard problems: A survey, Combinatorial
Optimization - Eureka! You shrink!, M. Juenger, G. Reinelt and G. Rinaldi (eds.).
LNCS 2570, Springer, pages 185-207, 2003.

10

