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Abstract . 
Advances in t,he theory of well-partially-order- 

ed sets now make it possible to prove the exis- 
tence of low-degree polynomial-time decision al- 
gorithms for a vast assortment of natural prob- 
lems, many of which seem to resist more tradi- 
tional means of complexity classification. Sur- 
prisingly, these proofs are nonconstructive, based 
on the promise of an iiiiknown but finite obstruc- 
tion set. 

Recent progress has yielded constructivization 
strategies that, for most applications, allow the 
desired decision (and search) algorithms to be 
known [FL3], despite the nonconstructive nature 
of the underlying mathematical tools on which 
the existence of these algorithms is based. These 
constructivizations produce algorithms that rely 
on the finiteness of an obstruction set, yet they 
ensure no means for computing or even verifying 
a candidate set. 

The main purpose of this paper is to prove 
a theorem that is a graph-theoretic analogue of 
the Myhill-Nerode characterization of regular lan- 
guages. We employ this result to establish that, 
for many applications, obstruction sets are com- 
putable by known algorithms. 
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1. Introduction 
The primary result of this paper is a theorem 

that is striliingly analogous to the Myhill-Nerode 
characterization of regular languages, which we 
use to construct algorithms for computing the 
obstruction sets (finite bases) for many minor- 
closed and immersion-closed graph families. Also, 
as a byproduct of our methods, we achieve de- 
cision algorithms that are asymptotically faster 
than those previously reported for most of these 
problems. 

A major motivation for the approach we take 
is a desire to mechanize obstruction set identifi- 
cation and verification, thereby avoiding the need 
for (100 page plus!) heroic case analyses. See, for 
example, [Ar, Ki, Sa]. 

We note that, of course, as long as a decision 
algorithm is known for a closed family, the ob- 
struction set can be enumerated. The challenge 
is to determine when the entire set has been iden- 
tified (when to halt the enumeration). The al- 
gorithms we present here accomplish just that, 
halting after an obstruction set has been cap- 
tured. Yet they still possess an intriguing element 
of nonconstructivity: we can prove no bound on 
their halting time. 

The remainder of this paper is organized a5 
follows. In the nest section, we state our main 
theorem (modulo notation and definitions to he 
developed later). Preliminaries are introduced 
and a weak version of the main theorem is p r o i d  
in Section 3.  In Section 4. we complctc thc proof 
of the main theorem. We illustrate its use with 
sample applications in Section 5 .  The final scc- 
tion consists of a few concluding remarl=. 
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2. Overview of the Main Theorem 
Given L C E’, the canonical equivalence rela- 

tion NL is: x - L  y if and only if, Vz E C * , z z  E 
L yz E L.  An equivalence relation - is a 
congruence if, Vz E C * , x  - y --r‘ xz - yz and 
zx - zy. The theorem below follows immediately 
from the well-known work of Myhill and Nerode. 

Theorem A (Myhill-Nerode). Let L denote a sub- 
set of E*. If an equivalence relation - that is 
decidable with a known algorithm satisfies: 

(1) - has finite index, 

(2) - is a congruence with respect to concatena- 
tion, and 

( 3 )  x - Y * 2 Y, 

then ( L  is regular and) an algorithm is known to 
compute a DFA that recognizes L.  

The theorem that follows is a formal analogue 
of Theorem A. We state the result in terms of 
the minor order for notational convenience, but 
observe that it immediately applies to other RS 
posets as well (for example, the immersion or- 
der). Also. we postpone the formal definition 
of t-boundaried graphs and t-terminal operators 
until later, noting for now only that the former 
roughly corresponds to graphs with a fixed set of 
t distinguished, labeled vertices and that the lat- 
ter provides a means for describing the recursive 
generation of the set of all graphs of tree-width 
at most t .  

Theorem 2 (Muin Result). Let E’ denote a minor- 
closed family, with a known membership algo- 
rithm, and a linown bound on the tree-width of 
its obstruction set 0. If an equivalence relation 
N on t-boundaried graphs that is decidable with 
a known algorithm satisfies: 

(1) - has finite index, 

(2) - is a congruence with respect to any t- 
terminal operation, and 

( 3 )  5 - y --r‘ 2 N F  Y, 

then ( F  can be recognized in cubic time and) an 
algorithm is known to compute 0. 

3. Preliminary Results 

Definition. A t-boundaried graph G = (V, E ,  B ,  f )  
is an ordinary graph G = (V, E )  that is allowed to 
have loops and multiple edges, together with (1) a 
distinguished subset of the vertex set B E V with 
J B ]  = t ,  and (2) a bijection f : B --f (1,. . . ,t}. 
We term B the boundary of G. If G is a bound- 
aried graph, we may also simply write G to de- 
note the underlying ordinary graph G = (V,E) .  
Where there is any possibility of confusion, we 
will write G to denote the underlying ordinary 
graph. 

Definition. If G = ( V , E , B , f )  and G’ = (V‘,E’, 
B‘, f‘) are t-boundaried graphs, then G G? G’ de- 
notes the ordinary graph obtained from the dis- 
joint union of tshe graphs G = (V ,E)  and G’ = 
(V’,E’) by identifying each vertex U E B with 
the vertex U E B’ for which f(u) = f’(v). 

Informally, a t-boundaried graph is just an or- 
dinary graph with a set o f t  distinguished vertices 
uniquely labeled with { 1, . . . , t}, and for bound- 
aried graph G and H ,  G @ H is obtained by glu- 
ing G and H together according to the labeling 
of the boundaries. Note that G @ H H @ G. 
The lemma below follows immediately from the 
definition. (We write X >m Y if X and Y are 
ordinary graphs and X is greater than or equal 
to Y in the minor ordering.) 

Lemma 1. If X . Y  are t-boundaried graphs with 
- X rm 2 for an ordinary graph 2, then X @Y r,, 
2. 

If F is an arbitrary family of (ordinary) graphs, 
we define the following canonical equivalence re- 
lation on the set of t-boundaried graphs. 

Definition. S -JF Y if and only if, for every t- 
boundaried graph 2, X @ 2 E F Y @ 2 E F .  

This yields a natural decision problem. 

F-CONGRUENCE 

Input: t-boundaried graphs X and Y 

Question: Is X N F  Y? 

We use in an essent,ial way a version of the mi- 
nor ordering appropriate to t-boundaried graphs. 
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Definition. If G = (V, E,  B ,  f )  and G’ = (V’, E’, 
B’,f’) are t-boundaried graphs, then G >,, G’ 
if and only if a t-boundaried graph isomorphic 
to G’ can be obtained from G by a sequence of 
operations chosen from (1) delete an edge, (2) 
delete a vertex of V - B ,  and (3) contract an 
edge u’u for which I { u ,u }  n BJ 5 1 (if, without 
loss of generality, U E B,  then the resulting vertex 
retains the label of U assigned by f ) .  

Thus the minor order for boundaried graphs 
is defined just like the ordinary minor order, ex- 
cept that we require the boundary set of vertices 
B to be held fixed. The following lemma is an 
immediate consequence of the definition above. 

Lemma 2. If G’, G, H’, H are t-boundaried graphs 
for which G’ >,, G and H’ >,, H then G’@H’ Lm 
G @ H .  0 

We make use of the theory of graph families 
generated by t-terminal composition operations 
(see [Wi]). 

Definition. A binary t-terminal composition op- 
erator 8 is defined by (1) a t-boundaried graph 
T8 = (VB,EB,BB,fB) and (2) injective maps fi : 
(1,. . . , t} -+ V,, for i = 1,2.  If Gi = (V,,E;, Bi, f;) 
is a pair of t-boundaried graphs, then GI 8 G2 is 
defined to be the t-boundaried graph for which 
the ordinary underlying graph is formed from the 
disjoint union of G1,G2 and T8 by identifying 
each vertex U of B; (for i = 1 ,2 )  with its im- 
age f i (u)  in V,. The boundary set and labeling 
for G I @  G:! is given by B, and f8. 

For a simple example, note that @ is the com- 
position operator with underlying graph rt and 
with f l  = f 2  the identity function. Crucial t o  our 
arguments are the theorems below. 
Theorem B (Wimer). The family of boundaried 
graphs of tree-width at  most k is recursively gen- 
erated from a finite set of boundaried graphs with 
boundary size at  most k +  1 by a finite set of com- 
position operators. 

Theorem C (Robertson-Seymour). The set of all 
t-boundaried graphs is well-partially-ordered by 
>,,, and there are known polynomial-time order 
tests for >,,. 

The next lemma generalizes Lemma 2 to ar- 
bitrary composition operators. 

Lemma 3. If @ is a composition operator and if 
G’, G, H’, H are t-boundaried graphs with G‘ 27n 
G, H‘ 2, H ,  then G’ @I H‘ >,, G 8 H .  

Let F be a closed family in the minor order 
(on ordinary graphs). We define an associated 
partial order on t-houndaried graphs in terms of 
F-congruence. A key step in our argument will 
be to show that this associated order is a well- 
partial-order (for fixed t). 

Definition. If G ,  H are t-boundaried graphs, then 
G >F H if and only if G >m H and G NF H .  

Lemma 4. If a decision algorithm is known for 
F-CONGRUENCE, then an algorithm is known 
for determining whether a t-boundaried graph G 
is minimal with respect to _>F.  

Proof. Exhaustively check for each t-boundaried 
graph H below G in the order >,, (these are eas- 
ily enumerated and there are a finite number) 
whether there is a f-boundaried graph I< with 
G @ A- # F,  H L% I< E F ,  using the decision algo- 
rithm for F-CONGRUENCE. 0 

Lemma 5. If G is a t-boundaried graph that is 
not minimal with respect to > F ,  for F a closed 
family in the minor order of ordinary graphs, then 
- G # 0 the obstruction set for F .  

Proof. If G is not minimal, then G >,, H , G  # 
H ,  for some H for which G @ I C  # F implies 
H @ IC # F .  It follows by taking I C  = that 
- G = G @ I{ >,, H C€ I< = I€, and G # F implies 
B # F so G is not a minimal element of the 
complement of F .  0 

The next lemma shows that >F is congruent 
with composition. 

Lemma 6. If G’ 2 F  G and H’ >F H ,  then G’ @ 
H‘ >F G @ H .  

Proof. By the definition of 2~ and Lemma 3 ,  
G’ 8 H’ 2- G 8 H .  Suppose (G’ 8 H’)  CE IC $2 
F ,  but ( G  @ H )  @ IC E F .  By the definition 
of composition operators it is straightforward to 
describe I<’ such that (G @ H )  @ I< = G @ IC’ 

522 

Authorized licensed use limited to: University of Newcastle. Downloaded on October 13, 2009 at 00:01 from IEEE Xplore.  Restrictions apply. 



a d  (G’ (8 H )  f€ IC = G’ @ IC’. Then G @ I{’ E F 
implies G” f€ I<’ E F since G’ >F G. Similarly, it 
is easy to describe I<” such that (G’ (8 H )  @ I< = 
H @ IC’’ and (G’ 0 H’) @ IC = H’ 8 IC”. Then 
G’ CB I<’ = H’ IC” E F implies H’ e IC” E F 
since H’ >F H. a contradiction. 

Corollary. If G is not >F minimal, then for all 
H ,  G o H is not >F minimal. 

tree-width. If a t  some point in this generation 
process the set of generated (boundaried) graphs 
R is stable (which can be determined if we can 
decide >F minimality), then we know that all of 
the obstructions for F have been captured. We 
prove this in the next lemma. 

Lemma 8. 
with A 

If R is a set of boundaried graphs, 
R, that is stable with respect to F and 

Lemma 7. For each fixed t, >F is a well-partial- 
ordering of the set of t-boundaried graphs tor F 
a closed family in >_m. 

Proof. Clearly, there are no infinite descending 
chains. Suppose A is an infinite antichain. By a 
standard argument (see [Mi]) we can obtain an 
infinite ascending chain in the minor order >m of 
elements of A. Let Xo, X’I,. . . denote this chain. 
For i < j there must be a t-boundaried graph 
y Z j  such that -7ij @ k;j 6 F ,  while Xi @ y Z j  E F ,  
else it is contradicted that A is an infinite an- 
tichain. Consider the sequence of such witnesses 
1’01, Y l 2 ,  Y 2 3 , .  . .. By Theorem C we must have in- 
dices i < j < k < with y Z j  Lm Y~,e,j = i + 1 , e  = 
k+l. But then we have X;@yZ,j E F ,  XjeyZj 6 F ,  
X I ,  @ Y I , ~  E F and X j  L m  Xk .  By Lemma 2 we 
must have X j  @ x.j sm X I ,  @ Yke ,  contradicting 
that F is a closed family in the minor order of 
ordinary graphs. 0 

R, then 0 n 
Proof. The inclusion C is trivial. For the reverse, 
suppose I< E 0, I< $! B’n 0. By our assump- 
tions, there is a boundaried graph L such that 
- L = I< and L can be expressed as a finite prod- 
uct with operators chosen from SZ and with argu- 
ments in R. Since L $! R this a nontrivial factor- 
ization, and so by Lemmas 3 ,  5 and the Corollary 
to Lemma 6 either I< H E OnR and I< # H, 
or L is not >F minimal. In either case we reach 
a contradiction. U 

= 0.  

The main point is just that when the genera- 
tion process stabilizes, it is useless to go any fur- 
ther in searching for F-obstructions. Anything 
further that can be generated is useless (and use- 
less for any further applications of the operators) 
because it must be 2~ nonminimal. Since no fur- 
ther obstructions can be generated, they have all 
been captured. The next lemmas shows that at  
some point the generation process must stabilize. 

For the remainder of this section let F denote 
a closed family under >m for ordinary graphs with Lemma 9. If A’ Ri then is with re- 
obstruction set 0. Let f be a fixed positive inte- spect to ad R. 
ger SO that. with Lemma 7. >F is a well-partial- proof. L~~ G, H E R and suppose G @ H 6 R. 
ordering of the boundaried graphs with boundary since R 
size at most f. For the set of all such bound- and so G H # and G H is not minimal. 0 
aried graphs, let denote the set of >F mini- 
mal elements. Let R he a finite set of t-terminal We conclude this section with a weak but rela- 
composition operators that, from a finite set -4 tively simple and illustrative version of our main 
of t-boundaried graphs. generates a class C with result. 

Theorem 1. If F is a minor-closed family of graphs 0 c. 
for which the following are 1 u ~ ~ n :  
(1) a decision algorithm for recognizing F ,  

(2) a decision algorithm for F-CONGRUENCE, 

2 R we have G @ H 2F I< E fil 

Definition. A set R of boundaried graphs is stable 
with respect to F and R if V@ E R and VG. H E R 
such that G 8 H $! R, G @I H is not >F minimal. 

The motivation for the above definition is as 
follows. Knowing a bound on the tree-width of 
graphs in 0,  we use Theorem B to describe a 
process of generating all graphs of the relevant 

and 

( 3 )  a bound on the tree-width of the obstruc- 
tions for F ,  
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then an algorithm is known that will compute the 
obstruction set for F .  

Proof. Using Theorem B, starting from a finite 
set of t-boundaried graphs with boundary sizes at  
most some constant t we can generate a class C 
that contains 0. By (1) we can recognize obstruc- 
tions when they are found. By (2) and Lemma 4 
we can determine whether the generation proce- 
dure has stabilized. By Lemma 9 it must eventu- 
ally stabilize, and by Lemma 8 at  that point all 
of the obstructions have been found. 0 

4. Proof of the Main Theorem 

Theorem 2. Let F denote a minor-closed fam- 
ily, with a known membership algorithm, and a 
known D O U ~  VII LIL~: Llee-width of its obstruc- 
tion set 0. If an equivalence relation - on t- 
boundaried graphs that is decidable with a known 
algorithm satisfies: 

(1) - has finite index, 

(2) - is a congruence with respect to any t- 
terminal operation, and 

(3) 2 y * 2’ -F y, 

then ( F  can be recognized in quadratic time and) 
an algorithm is known to compute 0. 

Proof. Define X 2 E’ if and only if X >m Y 
and X - Y. Because >m and - are decidable 
by known algorithms, we know an algorithm to 
decide 2. Suppose A is an infinite antichain in 
the order 2. By (l), there is an infinite subset A’ 
of A with all members of A’ in the same equiva- 
lence class of -. Since Lm is a well-partial-order, 
there must be X ,  Y E A’ for which X >m Y, and 
therefore X 2 Y, a contradiction. So 2 is a well- 
partial-order. Let M be the (finite) set of minimal 
elements of the set of all t-boundaried graphs un- 
der 2, where t is appropriate to the known bound 
on the tree-width of 0. Thus, from a finite set of 
t-boundaried graphs, we can generate using oper- 
ators in a finitme set R a class C that contains 0. 
If X is not minimal with respect to 2, then by 
( 3 )  it is not minimal with respect to > F ,  and so 
by Lemma 5 its underlying graph is not an ob- 

struction. We define stability as before, replacing 
>F with 2.  Since we can decide 2, we can de- 
cide stabilization. By (2) and an easy argument 
analogous to that used in Lemma 8, at stabiliza- 
tion the obstruction set is captured. When M 
has been generated, stabilization is assured (re- 
call Lemma 9). Because is finite, stabilization 
is inevitable. 0 

5. Sample Applications 
Just as is the case when attempting to apply 

Theorem A to demonstrate the regularity of some 
L C E’, we find that the problem of establishing 
the computability (by a known algorithm) of an 
obstruction set is now reduced to that of finding a 
satisfactory equivalence relation (that is, one that 
meets the conditions required by Theorem 2). 

For example, consider the union of two minor- 
closed families F1 and Fz. Clearly, such a union 
is minor-closed as well, guaranteeing a finite-basis 
characterization. But surprisingly, and quite un- 
like the case for intersection, proving the com- 
putability (by a known algorithm) of the union’s 
obstruction set from knowledge of the sets for 
F1 and F2 has resisted all previously-known at- 
tempts. 

Theorem 3. If Fl and F2 are minor-closed families 
with known obstruction sets 0 1  and 0 2 ,  and if a 
bound is known on the tree-width of the obstruc- 
tions for F = F1 UF2. then an algorithm is known 
that will compute the obstruction set for F .  

Proof. Using Theorem 2, we define X - Y if 
and only if X Y and X -F* Y .  Because 0 1  

and 0 2  are known. a decision algorithm for F is 
known. Since -F1 and -F? are decidable with 
known methods. N is decidable with a known 
method. The indes of - is finite, because it is the 
intersection of the equivalence relations -F1 and 
-F?,  each of finite indes. That N is a congruence 
with respect to t-terminal operators follows from 
Lemma 6 and the fact that the intersection of 
congruences is a congruence. To complete the ap- 
plication of Theorem 2, our only remaining task 
is to show that X - Y implies X -F E’. Suppose 
otherwise for some X N Y. Then (without loss of 
generality) there exists a 2 such that X @ 2 E F 
and Y 43 2 6 F .  This means, by the definition of 
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F ,  that either (1) X @ 2 E FI and Y @ 2 F I ,  
or (2)  X @ 2 E F2 and Y @ 2 # F2. But (1) con- 
tradicts the assumption that X -9 Y and (2) 
contradicts the assumption that X -F, Y .  U 

Other well-studied problems for which we can 
now employ Theorem 2, along with an appropri- 
ate equivalence relation, to prove obstruction set 
computability (by a known algorithm) include: 
k-VERTEX COVER, k-FEEDBACK VERTEX 
SET, k-MIN CUT LINEAR ARRANGEMENT, 
k-DISK DIMENSION [FLl], WITHIN-k VER- 
TICES OF F [FL2], g-UNIT CYCLE AVOID- 
ANCE [FL2], k-VERTEX INTEGRITY and k- 
EDGE INTEGRITY [CEF]. 

Moreover, only the lack of knowledge of an ap- 
propriate tree-width bound (there always is such 
a bound) at this time precludes the application 
of Theorem 2 to prove the computability (by a 
known algorithm) of Kuratowski characterizations 
for problems such as GENUS, LINKLESSNESS 
and several others. 

6. Concluding Remarks 

We emphasize that our concern here has fo- 
cused exclusively on just what is computable (by 
a known algorithm) in principle, as opposed to 
what is computable in practice. We remind the 
unwary reader that this general line of investiga- 
tion is fraught with truly astronomical constants 
of proportionality [RSl]. 

Also, we note that the need to know a bound 
on an obstruction set’s tree-width cannot be com- 
pletely eliminated. Specifically, Theorem 16 of 
[FL3] can be extended to show that there is no 
algorithm to compute, from a finite description 
of a minor-closed family F (as represented by a 
Turing machine that accepts precisely the graphs 
in F ) ,  any bound on the tree-width of the ob- 
struction set for F .  

Clearly, the results we have reported here have 
the potential to open up new avenues of inquiry 
into the limits of nonconstructivity inherent in 
well-partial-order-based complexity tools. We find 
it especially satisfying to see that such a classic 
theorem from formal language theory has a useful 
analogue in this novel research domain. 

References 

D. Archdeacon, “A Kuratowski Theorem 
for the Projective Plane,” Ph.D. Thesis, 
Ohio State University, 1980. 
L. Clark, R. C. Entringer and M. R. Fel- 
lows, “Computational Complexity of Integ- 
rity,” J .  Comban. Math. Combin. Com- 

M. R. Fellows and M. A. Langston, “Non- 
constructive Advances in Polynomial Time 
Complexity,” Info. Proc. Letters 26 (1987), 

, “Nonconstructive Tools for 

put. 3 (1988), 549-560. 

157-162. 

Proving Polynomial-Time Decidability,” 
J. of the ACM35 (1988), 727-739. 

, “On Search, Decision and 
the Efficiency of Polynomial-Time Algo- 
rithms,” PTOC. 21st ACM STOC (1989), 

N. G. Kinnersley, “Obstruction Set Isola- 
tion for Layout Permutation Problems,” 
Ph. D. Thesis, Washington State Univer- 
sity, 1989. 
E. Milner, “Basic WQO and BQO The- 
ory,” in Graphs and Orders (I. Rival, ed.), 
Reidel, Amsterdam, 1985. 
N. Robertson and P.D. Seymour, “Graph 
Minors V. Excluding a Planar Graph,” J .  
Comb. Th. Ser. B 41 (1986), 92-114. 

, “Graph Minors XIII. The 
Disjoint Paths Problem,” to appear. 

, “Graph Minors XVI. Wag- 
ner’s Conjecture,” to appear. 
H. Saran, “Constructive Results in Graph 
Minors: Linltless Embeddings,” Ph. D. 
Thesis, University of California, Berkeley, 
1989. 
T.V. Wimer, “Linear Algorithms on k- 
Terminal Graphs,” Ph.D. Thesis, Clem- 
son University, 1987. 

501-512. 

525 

Authorized licensed use limited to: University of Newcastle. Downloaded on October 13, 2009 at 00:01 from IEEE Xplore.  Restrictions apply. 


