
Information Processing Letters 65 (1998) 163-168

An improved fixed-parameter algorithm for vertex cover ’

R. Balasubramanian a, Michael R. Fellows b, Venkatesh Raman a,*
a The Institute of Mathematical Sciences, C.I.T. Campus, 600 I I3 Chennai, India

b Department of Comprtter Science, University of Victoria, Victoria, British Columbia, Canada

Received 27 August 1996
Communicated by F. Dehne

Abstract

The VERTEX COVER problem asks, for input consisting of a graph G on n vertices, and a positive integer k, whether
there is a set of k vertices such that every edge of G is incident with at least one of these vertices. We give an algorithm
for this problem that runs in time O(kn + (1.324718)‘k’). In particular, this gives an 0((1.324718)“n2) algorithm to find
the minimum vertex cover in the graph. @ 1998 Published by Elsevier Science B.V.

Keywords: Algorithms; Vertex cover; Fixed-parameter tractability

1. Introduction

For many computational problems the input con-
sists of several parts, and it is useful to study how the
different parts contribute to overall problem complex-
ity. For example, many well-known decision prob-
lems concerning graphs including CLIQUE, DOMI-
NATING SET, GRAPH GENUS, MIN CUT LINEAR
ARRANGEMENT, BANDWIDTH and the problem

VERTEX COVER that we consider here, take as input
a graph G and a positive integer k.

The parameter k appears to contribute to the com-
plexity of these problems in two qualitatively dis-
tinct ways. GRAPH GENUS, MIN CUT LINEAR AR-
RANGEMENT and VERTEX COVER can all be solved
in time 0(f(k)n’) where c is a constant independent
of k and f is some (arbitrary) function. This “good

* Corresponding author: Email: vraman@imsc.emet.in.
i Part of this work was done while the third author was visiting

the University of Victoria, Canada.

behavior” is termedfied-parameter tractability in the
theory introduced by Downey and Fellows in [3 1. As
is the case with the polynomial-time complexity, the
exponent c is typically small.

Contrasting complexity behaviour is exhibited
by the problems CLIQUE, DOMINATING SET and
BANDWIDTH, for which the best-known algorithms
have running times 0 (nck). These problems have
been shown to be complete or hard for the param-

eterized complexity class W[l] and aye considered
unlikely to be fixed-parameter tractable [41.

The VERTEX COVER problem asks whether a given
graph on IZ vertices has a vertex cover (a set of ver-
tices such that every edge is incident with some ver-
tex of the set) of size at most k. This was one of the
first problems shown to be fixed-parameter tractable.
The first algorithm due to S. Buss (see [1]) had an
0(kn + 2kk2kf2)-time complexity. Papadimitriou and
Yannakakis [7] while proving that the vertex cover
problem is in P when k is restricted to 0(log n) pro-
vided an 0(3kn) algorithm. By using the observa-

OOZO-0190/98/$19.00 @ 1998 Published by Elsevier Science B.V. All rights reserved

PII s0020-0190(97)00213-5

164 R. Balasubramanian et al. /Information Processing Letters 65 (1998) 163-168

tion of Buss, the running time of this algorithm can
be improved to 0(3kk2 + kn). Downey and Fellows

[51 have given a different algorithm that runs in time

0(2kk2 + kn) (see also [6, p. 2161). In this paper,
we describe an algorithm with an improved running
time bound of O(kn + (1.324718)kk2).

Note that when k is O(logn) the complexity of
the algorithm is superpolynomial. Papadimitriou and
Yannakakis [71, when investigating the complexity

of some NP-hard problems when the parameter k is
restricted to be logarithmic in the input size, designed
the following algorithm to show that the LOG vertex
cover problem is in P.

2. Previous work Algorithm (PY) .

We first describe the algorithm due to Buss [11.

Given a simple graph and an integer k, it checks
whether it has a vertex cover of size k. The algorithm
is based on a technique which Downey and Fellows
[5] classify as “the method of reduction to problem

kernel”. The main idea is to reduce (in polynomial
time) the problem to an equivalent problem where the
problem size is bounded by a function of k. We as-
sume that the given graph G is given in the adjacency
list representation.

Algorithm (Buss).
Step 1: Find all vertices of degree more than k in

G. Let the number of those vertices be b. If b >
k then answer “NO”. Otherwise include those b
vertices in the vertex cover, remove them and the

edges incident with them from G. Let k’ = k - b.
Remove any resulting isolated vertices.

Step 2: If the resulting graph has more than kk’ edges,
then answer “NO”.

Step 1: Find a maximal matching in the graph. Let the
size of the matching (the number of edges) be m.
If m > k answer “NO”. If 2m < k, then answer
“YES”. The 2m vertices form a vertex cover.

Step 2: Let U be the set of the endpoints of the m
edges of the maximal matching. For every edge of

the matching, either one of the endpoints or both
are in any vertex cover of G. Furthermore, once a
subset of U is picked in a vertex cover, the rest
of the vertex cover is uniquely determined: for ev-
ery vertex in V - U, it is included in the vertex
cover if and only if there is an edge incident with
it whose other endpoint (which is in U) has not
been picked in the vertex cover. So, cycle through
the 3m subsets of U (by picking either one or both
of the endpoints of each edge in the matching) and
check, for each subset whether it along with its
unique extension to V is of size at most k. If it is
so for any subset, answer “YES”, otherwise answer
“NO”.

Step 3: Find by brute-force whether the resulting graph
has a vertex cover of size k’. If so then answer
“YES”. Otherwise answer “NO”.

A maximal matching in a graph can be found in
O(n) time by simply picking the first edge in the list,
removing the edges incident on both endpoints, and

repeating this process until there are no edges.
If the graph has a vertex cover of size k, then all ver-

tices of degree more than k must be in the vertex cover.
This justifies the first step. Step 1 can be performed in
0(kn) time given the adjacency list representation of
the graph. As the vertices of the resulting graph have

degrees bounded by k, k’ vertices can cover at most
kk’ edges. This justifies Step 2. In Step 3, checking
whether the resulting graph has a vertex cover of size
k’ is done by brute-force by finding all possible sub-
sets of size at most k’ of the resulting graph. Since the
total number of edges is at most kk’ and there is no
isolated vertex, the number of vertices of the resulting
graph is at most 2kk’. As k’ is at most k, Step 3 can
be performed in 0((2k2)kk2).

In Step 2, for a subset of U, the vertex cover which
is an extension of that subset can be determined in
O(e) time where e is the number of edges in the graph.
Since every vertex of V - U has degree at most 2m,
e is O(mn) and as m 6 k, Step 2 can be performed
in 0(3kkn) time. So the entire algorithm requires
O(n + 3kkn). By preprocessing the entire graph by
applying Steps 1 and 2 of Buss’ algorithm, we could
assume that the resulting graph has 0(k*) vertices and
edges after spending 0(kn) time. Thus the bound for
the algorithm reduces to 0(kn + 3kk2).

Instead of trying the 3” subsets of U, one could sim-
ply run through 2m subsets of U by picking only one
of the endpoints of each edge in the matching, and re-

R. Balasubratnanian et al. /Information Processing L.etters 65 (1998) 163-168 165

cursively checking whether the resulting graph (after

deleting the subset of vertices and the edges incident
with them) has a vertex cover of size k-m. This results
in an algorithm whose running time is 0(kn + 2kk2).

Downey and Fellows [S] have achieved this bound
independently by using a search tree technique. Their
idea is to choose for each edge in the graph, one of the
endpoints in the vertex cover, and check recursively

whether any of the resulting two graphs (obtained af-
ter deleting the chosen vertex and all incident edges)
has a vertex cover of size at most k - 1. See also [61
for a similar algorithm.

In the next section, we present our algorithm that

has a running time of O(kn + (1.324718)kk2).

3. Improved search tree algorithms

Our algorithm is based on the “bounded search
tree” technique as that of Downey and Fellows [5].
Hereafter the term “node” refers to a vertex of the

search tree, and the term “vertex” refers to a vertex
of the graph. Basically, at each node of the search
tree we have a partial vertex cover and the resulting
graph which is obtained by deleting the vertices in
the partial vertex cover and edges incident with them
(and any resulting isolated vertices) from the origi-
nal graph. The edges of the tree correspond to vari-
ous possibilities for addition of vertices to the exist-
ing vertex cover. We stop growing the search tree at a
node if the partial vertex cover corresponding to that
node has size k or the resulting graph at that node
is empty (in which case we have already found a

vertex cover of size k or less). Our search tree will
have the property that for every vertex cover of size

k or less in the original graph, there will be a node
in the search tree that has a corresponding (perhaps
not the same) vertex cover of size k or less, and if
the original graph has no vertex cover of size k or
less, no node in our search tree will have its result-
ing graph empty. Given the adjacency list representa-
tion of the graph, we spend O(n) time at each node
of the search tree. So, if C(k) is the total number of
nodes in the search tree, then the total time spent is

O(nC(k)).
We first reduce the problem to the kernel by ap-

plying Steps 1 and 2 of Buss’ algorithm by spending
0(kn) time. So at the root node of the search tree, we

have the b vertices picked at Step 1 of Buss’ algorithm

in the partial vertex cover, and the number of vertices
and edges of the resulting graph is 0(k2).

First, to get the idea across, we describe a simple
algorithm that has a running time of 0(kn+ (&) kk2).
At a node of the search tree, we pick a vertex x of the
resulting graph and grow a depth-first tree for three
levels. We end up with a triangle x, a, b, n or a path
X, a, b, c of length 3. In the first case, observe that
any vertex cover will have the vertices X, a or a, b or

X, b. In the second case, any vertex cover must have
the vertices X, b or a, c or a, b. In either case, we try

all the three possible pairs by including one pair at
a time in the partial vertex cover and remove these
vertices and the edges incident with them to reach the
next node of the tree. If the depth-first tree stops at
a (degree one) vertex at level one or two, then the
neighbour of the degree one vertex is chosen in the
partial vertex cover and we move to the next node of
the search tree. We stop growing the search tree if the

partial vertex cover has size k or the resulting graph
is empty. In the worst case, we can assume that each
internal node of the search tree has (out)degree 3,
and we pick two vertices to the partial vertex cover
at each such branch. Thus the total number of nodes

in the search tree C(k) is O(3k/2) and we have the
following theorem.

Theorem 1. Given a simple undirected n vertex

graph, and a positive integer k, we can find in

0((d)kk2 + kn) time a vertex cover ofsize at most
k, or determine that no vertex cover of size k exists.

We extend this by analysing several cases and by
picking subsets of different sizes at each node to prove
the following theorem.

Theorem 2. Given a simple undirected n vertex
graph, and a positive integer k, we can jnd in

0((1.324718)‘k2 + kn) time a vertex cover of size
at most k or determine that no vertex cover of size k

exists.

Proof. As before we preprocess the graph by apply-
ing the first two steps of the Buss’ algorithm, and grow
a search tree. At any node of the search tree, the ad-
jacency list is scanned for the following cases in that
order, and the suggested actions are taken depending

166 R. Balasubramanian et al. /Information Processing Letters 65 (1998) 163-168

on the cases fulfilled by the graph. Each branch of the
search tree is denoted by the set of vertices to be added
to the partial vertex cover at the node from which the
branch takes place. The partial vertex cover at the re-
sulting node is the union of the partial vertex cover
at its parent and the set of vertices in the branch. The
partial vertex cover at the root is the set of b vertices

picked in Step 1 of Buss’ algorithm.
Let N(x) denote the neighbours of the vertex X,

and N(S) for a set S is lJxES N(X).

(1) If there is a degree 1 vertex, branch by picking
its neighbour in the partial vertex cover. Thus

C(k) < 1 +C(k- 1). (1)

(2) If there is a degree 2 vertex say X, let its neigh-
bours be y and z . Then exactly one, or both, or neither
of y and z is in any vertex cover. If exactly one of y
and z, say y is in the vertex cover, then x has to be in
the cover to cover the edge xz. Since x has no other
role in that case, we might as well pick the other ver-
tex z , and assume that either both or neither of y and
z is in the vertex cover. If there is an edge between y
and z, this argument forces both y and z to be in the
vertex cover. So we branch by simply including y and
z. This implies that

C(k) 6 1 +C(k-2). (2)

Otherwise,
(a) Let y and z together have at least two neighbours

other than x. Then a vertex cover will have {y, z}

or N({y, z}). Thus

C(k) < 1+ C(k - 2) + C(k - 3). (3)

(b) The nodes y and z have together only one neigh-
bour a other than x. If both y and z are in the
vertex cover, then we might as well pick x and
a instead. So branch by simply picking {x, u} to
grow. Thus,

C(k) < 1 +C(k-2). (4)

(3) If there is a vertex x of degree at least 5, then
either the vertex is in the vertex cover or all its neigh-
bours are. So branch as x or N(x) which results in
the recurrence

C(k) < 1 +C(k- 1) fC(k-5). (5)

(4) Now every vertex has degree exactly 3 or 4.
Let x be a vertex of degree three with neighbours 1,2
and 3. In any vertex cover, if only two of these three
vertices, say 1 and 2 are present then x must be in
the cover to cover the edge x3. Instead we might as
well include 3 in the cover as x has no other role.
So without loss of generality, we assume that in any

vertex cover, { 1,2,3} or { 1) or (2) or (3) or none
I. ,2 and 3 will be there. of 1

(a) There is an edge (say 12) in the induced sub-
graph on 1, 2 and 3. Then in any vertex cover, if

not all of 1,2,3 are there, then 3 cannot be there
as at most one of { 1,2,3} can be in any vertex
cover and at least one of 1 and 2 must be in the
vertex cover. Then branch as { 1,2,3} or N(3)
and the recurrence is

(b)

cc>

Cd)

C(k) < 1+2C(k-3). (6)

since the degree of the vertex 3 is at least 3.
There is a common neighbour other than x, say
y, between a pair of the vertices { 1,2,3}, say
1 and 2. Now if all of 1,2 and 3 are not in the

vertex cover, then x and y are since at most one
of 1 and 2 can be in the vertex cover. So branch
as { 1,2,3} or {x, y} and the resulting recurrence
is given by

C(k) < 1+ C(k - 3) + C(k - 2). (7)

There are no edges among 1, 2 and 3, and one

of them say 1, has at least three neighbours other
than x. Now if not all of 1,2,3 are there in a
vertex cover, then either 1 is not there or 1 is
there and 2 and 3 are not. So branch as { 1,2,3}

or N(1) or {I} U N({2,3}) and the recurrence
is given by

C(k) < l-t- C(k - 3)

+C(k-4) +C(k-6). (8)

There are no edges among 1,2 and 3, and each of
1, 2 and 3 has, apart from x, exactly two private
neighbours (say 4,5; 6,7 and 8,9 respectively).
At least one of these vertices say 4, has a neigh-
bour say 10, in the complement of the induced
subgraph on the vertices 1 to 9. (Otherwise the
induced subgraph on the vertices 1 to 9 forms a
component by itself and so the optimum vertex

R. Balasubramanian et al. /Information Processing Letters 65 (1998) 163-168 167

cover in the component can be found in constant
time.) In that case if all of 1, 2 and 3 are not in
a vertex cover, then x is. Consider vertices 4 and
5. Either 4 and 5 are there in the vertex cover or
exactly one of them is there or neither of them
is there. If exactly one of them (say 5) is there,

then 1 has to be there apart from x. But the only

role of 1 is to cover the edge 14, and we might
as well pick the vertex 4 instead of 1. So with-
out loss of generality either both of 4 and 5 are
there in the vertex cover or neither of them. If
neither of them is there, then 1 must be there and
so 2 and 3 cannot be. Also neighbours of 4 and
5 must be in the cover. So branch as { 1,2,3} or
{x, 4,5} or N({2,3,4,5}) and the resulting re-
currence is

C(k) < 1 + 2C(k - 3) + C(k - 7). (9)

since N({2,3,4,5}) = {x, 6,7,8,9,1,10}.

(5) Repeating the above steps, we will be left with
a 4-regular graph. Pick any vertex x and let its neigh-

bours be 1, 2, 3 and 4. As we argued earlier in the
previous cases, we can assume without loss of gener-
ality that if not all of 1, 2, 3 and 4 are in the vertex
cover, then at most two of them are.
(a) The induced subgraph of 1, 2, 3 and 4 has an

edge, say 12. Then 3 and 4 together cannot be in
a vertex cover unless all of 1,2,3 and 4 are there.

So branch as { 1,2,3,4} or N(3) or (3) UN(4)
and the recurrence is

C(k) < 1 + 3C(k - 4) (IO)

since ({3}UN(4)) can be four as 3 and 4 can be

adjacent.
(b) There is no edge among 1, 2, 3 and 4. Three of

these vertices (say 1, 2 and 3) share a common
neighbour y other than x. Then when not all of
1, 2, 3 and 4 are in a vertex cover, x and y must

be. So branch as {1,2,3,4} or {x, y} and the
recurrence is

C(k) < 1 +C(k-4) I-C(k-2). (11)

(c) There is no edge among 1, 2, 3 and 4, each
one of them has three neighbours other than x,
and no three of them have a common neigh-
bour other than x. Here there is a pair of ver-
tices who have totally 5 neighbours other than X.

(Otherwise consider 1 and 2; they should have
two common neighbours other than n, and so
1 and 3 can have at most one common neigh-
bour other than x as any other common neigh-
bour will also be a neighbour of 2. So together
1 and 3 have five neighbours other than x). Let
it be 1 and 3. Consider vertices 2 and 4. If all of
1, 2, 3, 4 are not there in the vertex cover then
2 is not there, or 2 is there and 4 is not there,
or both 2 and 4 are there (in which case 1 and
3 are not). So branch as { 1,2,3,4} or N(2) or
{2}UN(4) or {2,4}UN({1,3}) and therecur-
rence is

C(k)<l++C(k-4)

+ C(k - 5) + C(k - 8). (12)

It can be verified using induction on k that C(k) =
d((1 .324718)k - 1) for some constant d satisfies all
the inequalities, the critical one being the inequal-
ity (3) (which is the same as the inequality (7)).
1.324718 is the positive real root (rounded to 6 deci-
mal places) to the equation c3 -c - 1 = 0 which comes
from the recurrence in inequality (3). Note that it suf-
fices to verify the solution on inequalities (3), (5),
(S), (9), (10) and (12) only. For, d((1.324718)k-
1) satisfies inequality (1) follows from the proof of
the inequality (5) and that it satisfies inequalities (2))
(4)) (6) and (11) follows from the proof of the
inequality (3). It is also easy to construct example
graphs where the search tree constructed in our algo-

rithm has C(k) = d((1.324718)k- 1) nodes by mak-
ing the algorithm to go through Case 2(a) always.

Thus the total running time of the algorithm is
O((1.324718)kk2 + kn). 0

4. Conclusions

Once a problem is known to be fixed-parameter
tractable, it is still an interesting question to find the
best possible f(k) for the fixed-parameter complex-
ity of the problem. As the dependence on k in the
runtime improves, this gives feasible algorithm for a
larger range of the parameter. We have demonstrated
this by providing an algorithm for the VERTEX COVER
problem that runs in time 0((1.3247 18) kk2 + kn) by
using the bounded search tree technique. This bound

168 R. Balasubrmnanian et al. /Information Processing Letters 65 (1998) 163-168

improves the best previous bound of 0(2kk2 + kn) References
for the problem. Our algorithm also provides the best-
known algorithm to solve the Minimum Vertex Cover [11 J.F. Buss, J. Goldsmith, Nondeterminism within P, SIAM J.

problem. To find the minimum vertex cover, it takes

0((1.324718)%*) time.
An immediate open question is whether the bound

[21

can be further improved. Perhaps a more interesting
question is whether approaches similar to that de-
veloped here can be applied to other fixed-parameter
tractable problem to improve the parameter functions

f(k).

[31

[41

Acknowledgements
[51

We thank Rod Downey for pointing out that the size
of the input graph can be assumed to be 0(k2) by

reducing the problem to the kernel, i.e., by applying
the first two steps of Buss’ algorithm.

[cl

171

Comput. 22 (1993) 560-572.

L. Cai, I. Chen, Fixed parameter tractability and approx-

imability of NP-hard optimization problems, in: Proc. 2nd

Israel Symp. on Theory and Computing Systems, 1993,

pp. 118-126.

R.G. Downey, M.R. Fellows, Fixed parameter tractability and

completeness I: Basic theory, SIAM J. Comput. 24 (1995)

873-921.

R.G. Downey, M.R. Fellows, Fixed parameter tractability and

completeness II: Completeness for W [I], Theoret. Comput.
Sci. 141 (1995) 109-131.

R.G. Downey, M.R. Fellows, Parametrized Computational

feasibility, in: P. Clote, J. Remmel (Eds.), Feasible

Mathematics II, Birkhauser, Boston, MA, 1995, pp~ 219-244.

K. Mehlhom, Data Structures and Algorithms 2: Graph

Algorithms and NP-Completeness, Springer, Berlin, 1984.

C.H. Papadimitriou, M. Yannakakis, On limited non-

determinism and the complexity of the V-C dimension, J.

Comput. System Sci. 53 (1996) 161-170.

